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Preface

Life is probably the most complex phenomenon in the universe. We see kids
growing, people aging, plants blooming, and microbes degrading their remains.
We use yeast for brewery and bakery, and doctors prescribe drugs to cure diseases.
But can we understand how life works? Since the 19th century, the processes of life
have no longer been explained by special ‘‘living forces,’’ but by the laws of physics
and chemistry. By studying the structure and physiology of living systems more and
more in detail, researchers from different disciplines have revealed how the mystery
of life arises from the structural and functional organization of cells and from the
continuous refinement by mutation and selection.
In recent years, new imaging techniques have opened a completely new percep-

tion of the cellular microcosm. If we zoom into the cell, we can observe how
structures are built, maintained, and reproduced while various sensing and regula-
tion systems help the cell to respond appropriately to environmental changes. But
along with all these fascinating observations, many open questions remain. Why do
we age? How does a cell know when to divide? How can severe diseases such as
cancer or genetic disorders be cured? How can we convince – i.e., manipulate –

microbes to produce a desirable substance? How can the life sciences contribute to
environmental safety and sustainable technologies?
This book provides you with a number of tools and approaches that can help you to

think in more detail about such questions from a theoretical point of view. A key to
tackle such questions is to combine biological experiments with computational
modeling in an approach called systems biology: it is the combined study of
biological systems through (i) investigating the components of cellular networks
and their interactions, (ii) applying experimental high-throughput and whole-
genome techniques, and (iii) integrating computational methods with experimental
efforts.
The systemic approach in biology is not new, but it recently gained new thrust due

to the emergence of powerful experimental and computational methods. It is based
on the accumulation of an increasingly detailed biological knowledge, on the
emergence of new experimental techniques in genomics and proteomics, on a
tradition of mathematical modeling of biological processes, on the exponentially
growing computer power (as prerequisite for databases and the calculation of large
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systems), and on the Internet as the central medium for a quick and comprehensive
exchange of information.
Systems Biology has influenced modern biology in two major ways: on the one

hand, it offers computational tools for analyzing, integrating and interpreting biolo-
gical data and hypotheses. On the other hand, it has induced the formulation of new
theoretical concepts and the application of existing ones to new questions. Such
concepts are, for example, the theory of dynamical systems, control theory, the analysis
of molecular noise, robustness and fragility of dynamic systems, and statistical net-
work analysis. As systems biology is still evolving as a scientific field, a central issue is
the standardization of experiments, of data exchange, and of mathematical models.
In this book, we attempt to give a survey of this rapidly developing field. We will

show you how to formulate your own model of biological processes, how to analyze
such models, how to use data and other available information for making your
model more precise – and how to interpret the results. This book is designed as an
introductory course for students of biology, biophysics and bioinformatics, and for
senior scientists approaching Systems Biology from a different discipline. Its nine
chapters contain material for about 30 lectures and are organized as follows.

Chapter 1 – Introduction (E. Klipp, W. Liebermeister, A. Kowald, 1 lecture)

Introduction to the subject. Elementary concepts and definitions are presented.
Read this if you want to start right from the beginning.

Chapter 2 – Modeling of Biochemical Systems (E. Klipp, C. Wierling, 4 lectures)

This chapter describes kinetic models for biochemical reaction networks, the most
common computational technique in Systems Biology. It includes kinetic laws,
stoichiometric analysis, elementary flux modes, and metabolic control analysis.
Introduces tools and data formats necessary for modeling.

Chapter 3 – Specific Biochemical Systems (E. Klipp, C. Wierling, W. Liebermeister,
5 lectures)

Using specific examples from metabolism, signaling, and cell cycle, a number of
popular modeling techniques are discussed. The aim of this chapter is to make the
reader familiar with both modeling techniques and biological phenomena.

Chapter 4 – Model Fitting (W. Liebermeister, A. Kowald, 4 lectures)

Models in systems biology usually contain a large number of parameters. Assigning
appropriate numerical values to these parameters is an important step in the
creation of a quantitative model. This chapter shows how numerical values can be
obtained from the literature or by fitting a model to experimental data. It also
discusses how model structures can be simplified and how they can be chosen if
several different models can potentially describe the experimental observations.
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Chapter 5 – Analysis of High-Throughput Data (R. Herwig, 2 lectures)

Several techniques that have been developed in recent years produce large quantities
of data (e.g., DNA and protein chips, yeast two-hybrid, mass spectrometry). But such
large quantities often go together with a reduced quality of the individual measure-
ment. This chapter describes techniques that can be used to handle this type of data
appropriately.

Chapter 6 –Gene ExpressionModels (R. Herwig, W. Liebermeister, E. Klipp, 3 lectures)

Thousands of gene products are necessary to create a living cell, and the regulation
of gene expression is a very complex and important task to keep a cell alive. This
chapter discusses how the regulation of gene expression can be modeled, how
different input signals can be integrated, and how the structure of gene networks
can be inferred from experimental data.

Chapter 7 – Stochastic Systems and Variability (W. Liebermeister, 4 lectures)

Random fluctuations in transcription, translation and metabolic reactions make
mathematics complicated, computation costly and interpretation of results not
straight forward. But since experimentalists find intriguing examples for macro-
scopic consequences of random fluctuation at the molecular level, the incorporation
of these effects into the simulations becomes more and more important. This
chapter gives an overview where and how stochasticity enters cellular life.

Chapter 8 –Network Structures, Dynamics and Function (W. Liebermeister, 3 lectures)

Many complex systems in biology can be represented as networks (reaction net-
works, interaction networks, regulatory networks). Studying the structure, dynamics,
and function of such networks helps to understand design principles of living cells.
In this chapter, important network structures such as motifs and modules as well as
the dynamics resulting from them are discussed.

Chapter 9 – Optimality and Evolution (W. Liebermeister, E. Klipp, 3 lectures)

Theoretical research suggests that constraints of the evolutionary process should
have left their marks in the construction and regulation of genes and metabolic
pathways. In some cases, the function of biological systems can be well understood
by models based on an optimality hypothesis. This chapter discusses the merits and
limitations of such optimality approaches.

Various aspects of systems biology – the biological systems themselves, types of
mathematicalmodels to describe them, andpractical techniques– reappear indifferent
contexts in various parts of the book. The following diagram,which shows the contents
of the book sorted by a number of different aspects, may serve as an orientation.
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At the end of the regular course material, you will find a number of additional
chapters that summarize important biological and mathematical methods. The first
chapters deal with to cell biology (chapter 10, C. Wierling) and molecular biological
methods (chapter 11, A. Kowald). For looking up mathematical and statistical
definitions and methods, turn to chapters 12 and 13 (R. Herwig, A. Kowald).
Chapters 14 and 15 (W. Liebermeister) concentrate on randomprocesses and control
theory. The final chapters provide an overview over useful databases (chapter 16,
C. Wierling) as well as a huge list of available software tools including a short
description of their purposes (chapter 17, A. Kowald).
Further material is available on an accompanying website
(www.wiley-vch.de/home/systemsbiology)
Beside additional and more specialized topics, the website also contains solutions

to the exercises and problems presented in the book.
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1
Introduction

1.1
Biology in Time and Space

Biological systems like organisms, cells, or biomolecules are highly organized in
their structure and function. They have developed during evolution and can only be
fully understood in this context. To study them and to apply mathematical,
computational, or theoretical concepts, we have to be aware of the following
circumstances.
The continuous reproduction of cell compounds necessary for living and the

respective flow of information is captured by the central dogma ofmolecular biology,
which can be summarized as follows: genes code for mRNA, mRNA serves as
template for proteins, and proteins perform cellular work. Although information is
stored in the genes in form of DNA sequence, it is made available only through the
cellular machinery that can decode this sequence and can translate it into structure
and function. In this book, this will be explained from various perspectives.
A description of biological entities and their properties encompasses different

levels of organization and different time scales. We can study biological phenomena
at the level of populations, individuals, tissues, organs, cells, and compartments
down to molecules and atoms. Length scales range from the order of meter (e.g., the
size of whale or human) to micrometer for many cell types, down to picometer for
atom sizes. Time scales include millions of years for evolutionary processes, annual
and daily cycles, seconds for many biochemical reactions, and femtoseconds for
molecular vibrations. Figure 1.1 gives an overview about scales.
In a unified view of cellular networks, each action of a cell involves different levels

of cellular organization, including genes, proteins, metabolism, or signaling path-
ways. Therefore, the current description of the individual networks must be inte-
grated into a larger framework.
Many current approaches pay tribute to the fact that biological items are subject to

evolution. The structure and organization of organisms and their cellular machinery
has developed during evolution to fulfill major functions such as growth, prolifera-
tion, and survival under changing conditions. If parts of the organism or of the cell
fail to perform their function, the individual might become unable to survive or
replicate.
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One consequence of evolution is the similarity of biological organisms from
different species. This similarity allows for the use of model organisms and for the
critical transfer of insights gained from one cell type to other cell types. Applications
include, e.g., prediction of protein function from similarity, prediction of network
properties from optimality principles, reconstruction of phylogenetic trees, or the
identification of regulatory DNA sequences through cross-species comparisons. But
the evolutionary process also leads to genetic variations within species. Therefore,
personalized medicine and research is an important new challenge for biomedical
research.

1.2
Models and Modeling

If we observe biological processes, we are confronted with various complex processes
that cannot be explained from first principles and the outcome of which cannot
reliably be foreseen from intuition. Even if general biochemical principles are well
established (e.g., the central dogma of transcription and translation, the biochemistry
of enzyme-catalyzed reactions), the biochemistry of individual molecules and
systems is often unknown and can vary considerably between species. Experiments
lead to biological hypotheses about individual processes, but it often remains unclear
if these hypotheses can be combined into a larger coherent picture because it is often
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difficult to foresee the global behavior of a complex system from knowledge of its
parts.Mathematicalmodeling and computer simulations can help us understand the
internal nature and dynamics of these processes and to arrive at predictions about
their future development and the effect of interactions with the environment.

1.2.1
What is a Model?

The answer to this questionwill differ among communities of researchers. In a broad
sense, a model is an abstract representation of objects or processes that explains
features of these objects or processes (Figure 1.2). A biochemical reaction network
can be represented by a graphical sketch showing dots formetabolites and arrows for
reactions; the same network could also be described by a system of differential
equations, which allows simulating and predicting the dynamic behavior of that
network. If a model is used for simulations, it needs to be ensured that it faithfully
predicts the system�s behavior– at least those aspects that are supposed to be covered
by the model. Systems biology models are often based on well-established physical
laws that justify their general form, for instance, the thermodynamics of chemical
reactions; besides this, a computational model needs to make specific statements
about a system of interest – which are partially justified by experiments and
biochemical knowledge, and partially by mere extrapolation from other systems.
Such a model can summarize established knowledge about a system in a coherent
mathematical formulation. In experimental biology, the term �model� is also used to
denote a species that is especially suitable for experiments, for example, a genetically
modified mouse may serve as a model for human genetic disorders.

1.2.2
Purpose and Adequateness of Models

Modeling is a subjective and selective procedure. A model represents only specific
aspects of reality but, if done properly, this is sufficient since the intention of
modeling is to answer particular questions. If the only aim is to predict system
outputs from given input signals, a model should display the correct input–output
relation, while its interior can be regarded as a black box. But if instead a detailed
biological mechanism has to be elucidated, then the system�s structure and the
relations between its parts must be described realistically. Somemodels aremeant to
be generally applicable to many similar objects (e.g., Michaelis–Menten kinetics
holds formany enzymes, the promoter–operator concept is applicable tomany genes,
and gene regulatorymotifs are common), while others are specifically tailored to one
particular object (e.g., the 3D structure of a protein, the sequence of a gene, or amodel
of deteriorating mitochondria during aging). The mathematical part can be kept as
simple as possible to allow for easy implementation and comprehensible results.Or it
can be modeled very realistically and be much more complicated. None of the
characteristics mentioned above makes a model wrong or right, but they determine
whether a model is appropriate to the problem to be solved. The phrase �essentially,
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all models are wrong, but some are useful� coined by the statistician George Box is
indeed an appropriate guideline for model building.

1.2.3
Advantages of Computational Modeling

Models gain their reference to reality from comparison with experiments, and their
benefits therefore depend on the quality of the experiments used. Nevertheless,
modeling combinedwith experimentation has a lot of advantages compared to purely
experimental studies:

. Modeling drives conceptual clarification. It requires verbal hypotheses to be made
specific and conceptually rigorous.

. Modeling highlights gaps in knowledge or understanding. During the process
of model formulation, unspecified components or interactions have to be
determined.

Figure 1.2 Typical abstraction steps in
mathematical modeling. (a) Escherichia coli
bacteria produce thousandsof different proteins.
If a specific protein type is fluorescently labeled,
cells glow under themicroscope according to the
concentration of this enzyme (Courtesy of
M. Elowitz). (b) In a simplified mental model,
we assume that cells contain two enzymes of
interest, X (red) and Y (blue) and that the
molecules (dots) can freely diffusewithin the cell.
All other substances are disregarded for the
sake of simplicity. (c) The interactions between
the two protein types can be drawn in a wiring
scheme: each protein can be produced or
degraded (black arrows). In addition, we
assume that proteins of type X can increase

the production of protein Y. (d) All individual
processes to be considered are listed together
with their rates a (occurrence per time). The
mathematical expressions for the rates are
based on a simplified picture of the actual
chemical processes. (e) The list of processes
can be translated into different sorts of
dynamic models; in this case, deterministic
rate equations for the protein concentrations
x and y. (f) By solving the model equations,
predictions for the time-dependent
concentrations can be obtained. If these
predictions do not agree with experimental
data, it indicates that the model is wrong or
too much simplified. In both cases, it has to be
refined.
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. Modeling provides independence of the modeled object.

. Time and space may be stretched or compressed ad libitum.

. Solution algorithms and computer programs can be used independently of the
concrete system.

. Modeling is cheap compared to experiments.

. Models exert by themselves noharmon animals or plants andhelp to reduce ethical
problems in experiments. They do not pollute the environment.

. Modeling can assist experimentation. With an adequate model, one may test
different scenarios that are not accessible by experiment. One may follow time
courses of compounds that cannot be measured in an experiment. One may
impose perturbations that are not feasible in the real system. One may cause
precise perturbations without directly changing other system components, which
is usually impossible in real systems. Model simulations can be repeated often and
for many different conditions.

. Model results can often be presented in precise mathematical terms that allow for
generalization. Graphical representation and visualization make it easier to
understand the system.

. Finally, modeling allows for making well-founded and testable predictions.

The attempt to formulate current knowledge and open problems in mathematical
terms often uncovers a lack of knowledge and requirements for clarification.
Furthermore, computational models can be used to test whether proposed explana-
tions of biological phenomena are feasible. Computational models serve as reposi-
tories of current knowledge, both established and hypothetical, about how systems
might operate. At the same time, they provide researchers with quantitative descrip-
tions of this knowledge and allow them to simulate the biological process, which
serves as a rigorous consistency test.

1.3
Basic Notions for Computational Models

1.3.1
Model Scope

Systems biologymodels consist ofmathematical elements that describe properties of
a biological system, for instance, mathematical variables describing the concentra-
tions of metabolites. As a model can only describe certain aspects of the system, all
other properties of the system (e.g., concentrations of other substances or the
environment of a cell) are neglected or simplified. It is important – and to some
extent, an art – to construct models in such ways that the disregarded properties do
not compromise the basic results of the model.

1.3 Basic Notions for Computational Models j7



1.3.2
Model Statements

Besides the model elements, a model can contain various kinds of statements and
equations describing facts about the model elements, most notably, their temporal
behavior. In kinetic models, the basic modeling paradigm considered in this book,
the dynamics is determined by a set of ordinary differential equations describing
the substance balances. Statements in other model types may have the form of
equality or inequality constraints (e.g., in flux balance analysis), maximality postu-
lates, stochastic processes, or probabilistic statements about quantities that vary in
time or between cells.

1.3.3
System State

In dynamical systems theory, a system is characterized by its state, a snapshot of the
system at a given time. The state of the system is described by the set of variables that
must be kept track of in amodel: in deterministicmodels, it needs to contain enough
information to predict the behavior of the system for all future times. Eachmodeling
framework defines what is meant by the state of the system. In kinetic rate equation
models, for example, the state is a list of substance concentrations. In the corre-
sponding stochastic model, it is a probability distribution or a list of the current
number ofmolecules of a species. In aBooleanmodel of gene regulation, the state is a
string of bits indicating for each gene whether it is expressed (�1�) or not expressed
(�0�). Also the temporal behavior can be described in fundamentally different ways.
In a dynamical system, the future states are determined by the current state, while in a
stochastic process, the future states are not precisely predetermined. Instead, each
possibly future history has a certain probability to occur.

1.3.4
Variables, Parameters, and Constants

The quantities in amodel can be classified as variables, parameters, and constants. A
constant is a quantity with a fixed value, such as the natural number e or Avogadro�s
number (number of molecules permole). Parameters are quantities that have a given
value, such as the Km value of an enzyme in a reaction. This value depends on the
method used and on the experimental conditions and may change. Variables are
quantitieswith a changeable value forwhich themodel establishes relations. A subset
of variables, the state variables, describes the system behavior completely. They can
assume independent values and each of them is necessary to define the system state.
Their number is equivalent to the dimension of the system. For example, the
diameter d and volume V of a sphere obey the relation V¼pd3/6, where p and 6
are constants, V and d are variables, but only one of them is a state variable since the
relation between them uniquely determines the other one.
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Whether a quantity is a variable or a parameter depends on the model. In reaction
kinetics, the enzyme concentration appears as a parameter. However, the enzyme
concentration itselfmay change due to gene expression or protein degradation and in
an extended model, it may be described by a variable.

1.3.5
Model Behavior

Two fundamental factors that determine the behavior of a system are (i) influences
from the environment (input) and (ii) processes within the system. The system
structure, that is, the relation among variables, parameters, and constants, deter-
mines how endogenous and exogenous forces are processed. However, different
system structures may still produce similar system behavior (output); therefore,
measurements of the system output often do not suffice to choose between alterna-
tive models and to determine the system�s internal organization.

1.3.6
Model Classification

For modeling, processes are classified with respect to a set of criteria.

. A structural or qualitative model (e.g., a network graph) specifies the interactions
amongmodel elements. A quantitativemodel assigns values to the elements and to
their interactions, which may or may not change.

. In a deterministic model, the system evolution through all following states can be
predicted from the knowledge of the current state. Stochastic descriptions give
instead a probability distribution for the successive states.

. The nature of values that time, state, or space may assume distinguishes a
discrete model (where values are taken from a discrete set) from a continuous
model (where values belong to a continuum).

. Reversible processes can proceed in a forward and backward direction. Irreversibil-
ity means that only one direction is possible.

. Periodicity indicates that the system assumes a series of states in the time interval
{t, t þ Dt} and again in the time interval {t þ iDt, tþ (i þ 1)Dt} for i¼ 1,2, . . . .

1.3.7
Steady States

The concept of stationary states is important for the modeling of dynamical
systems. Stationary states (other terms are steady states or fixed points) are deter-
mined by the fact that the values of all state variables remain constant in time. The
asymptotic behavior of dynamic systems, that is, the behavior after a sufficiently
long time, is often stationary. Other types of asymptotic behavior are oscillatory or
chaotic regimes.
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The consideration of steady states is actually an abstraction that is based on a
separation of time scales. In nature, everything flows. Fast and slow processes –

ranging from formation and breakage of chemical bonds within nanoseconds to
growth of individuals within years – are coupled in the biological world. While fast
processes often reach a quasi-steady state after a short transition period, the change of
the value of slow variables is often negligible in the time window of consideration.
Thus, each steady state can be regarded as a quasi-steady state of a system that is
embedded in a larger nonstationary environment. Despite this idealization, the
concept of stationary states is important in kinetic modeling because it points to
typical behavioral modes of the system under study and it often simplifies the
mathematical problems.
Other theoretical concepts in systems biology are only rough representations of

their biological counterparts. For example, the representation of gene regulatory
networks byBooleannetworks, the description of complex enzymekinetics by simple
mass action laws, or the representation of multifarious reaction schemes by black
boxes proved to be helpful simplification. Although being a simplification, these
models elucidate possible network properties and help to check the reliability of basic
assumptions and to discover possible design principles in nature. Simplifiedmodels
can be used to test mathematically formulated hypothesis about system dynamics,
and such models are easier to understand and to apply to different questions.

1.3.8
Model Assignment is not Unique

Biological phenomena can be described in mathematical terms. Models developed
during the last decades range from the description of glycolytic oscillations with
ordinary differential equations to population dynamics models with difference
equations, stochastic equations for signaling pathways, and Boolean networks for
gene expression. But it is important to realize that a certain process can be described
in more than one way: a biological object can be investigated with different
experimental methods and each biological process can be described with different
(mathematical) models. Sometimes, a modeling framework represents a simplified
limiting case (e.g., kineticmodels as limiting case of stochasticmodels). On the other
hand, the same mathematical formalism may be applied to various biological
instances: statistical network analysis, for example, can be applied to cellular-
transcription networks, the circuitry of nerve cells, or food webs.
The choice of amathematical model or an algorithm to describe a biological object

depends on the problem, the purpose, and the intention of the investigator.Modeling
has to reflect essential properties of the system and different models may highlight
different aspects of the same system. This ambiguity has the advantage that different
ways of studying a problem also provide different insights into the system. However,
the diversity of modeling approachesmakes it still very difficult to merge established
models (e.g., for individual metabolic pathways) into larger supermodels (e.g.,
models of complete cell metabolism).
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1.4
Data Integration

Systems biology has evolved rapidly in the last years driven by the new high-
throughput technologies. The most important impulse was given by the large
sequencing projects such as the human genome project, which resulted in the full
sequence of the human and other genomes [1, 2]. Proteomics technologies have been
used to identify the translation status of complete cells (2D-gels, mass spectrometry)
and to elucidate protein–protein interaction networks involving thousands of com-
ponents [3]. However, to validate such diverse high-throughput data, one needs to
correlate and integrate such information. Thus, an important part of systems biology
is data integration.
On the lowest level of complexity, data integration implies common schemes

for data storage, data representation, and data transfer. For particular experimen-
tal techniques, this has already been established, for example, in the field of
transcriptomics with minimum information about a microarray experiment [4],
in proteomics with proteomics experiment data repositories [5], and the Human
Proteome Organization consortium [6]. On a more complex level, schemes have
been defined for biological models and pathways such as Systems Biology
Markup Language (SBML) [7] and CellML [8], which use an XML-like language
style.
Data integration on the next level of complexity consists of data correlation. This

is a growing research field as researchers combine information from multiple
diverse data sets to learn about and explain natural processes [9, 10]. For example,
methods have been developed to integrate the results of transcriptome or proteome
experiments with genome sequence annotations. In the case of complex disease
conditions, it is clear that only integrated approaches can link clinical, genetic,
behavioral, and environmental data with diverse types of molecular phenotype
information and identify correlative associations. Such correlations, if found, are
the key to identifying biomarkers and processes that are either causative or
indicative of the disease. Importantly, the identification of biomarkers (e.g.,
proteins, metabolites) associated with the disease will open up the possibility to
generate and test hypotheses on the biological processes and genes involved in this
condition. The evaluation of disease-relevant data is a multistep procedure involv-
ing a complex pipeline of analysis and data handling tools such as data normaliza-
tion, quality control, multivariate statistics, correlation analysis, visualization
techniques, and intelligent database systems [11]. Several pioneering approaches
have indicated the power of integrating data sets from different levels: for example,
the correlation of gene membership of expression clusters and promoter sequence
motifs [12]; the combination of transcriptome and quantitative proteomics data in
order to construct models of cellular pathways [10]; and the identification of novel
metabolite-transcript correlations [13]. Finally, data can be used to build and refine
dynamical models, which represent an even higher level of data integration.
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1.5
Standards

As experimental techniques generate rapidly growing amounts of data and large
models need to be developed and exchanged, standards for both experimental
procedures andmodeling are a central practical issue in systemsbiology. Information
exchange necessitates a common language about biological aspects. One seminal
example is the gene ontology which provides a controlled vocabulary that can be
applied to all organisms, even as the knowledge about genes and proteins continues
to accumulate. The SBML [7] has been established as exchange language for
mathematical models of biochemical reaction networks. A series of �minimum-
information-about� statements based on community agreement defines standards
for certain types of experiments.Minimum information requested in the annotation
of biochemical models (MIRIAM) [14] describes standards for this specific type of
systems biology models.
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2
Modeling of Biochemical Systems

2.1
Kinetic Modeling of Enzymatic Reactions

Summary

The rate of an enzymatic reaction, i.e., the velocity by which the execution of the
reaction changes the concentrations of its substrates, is determined by concentra-
tions of its substrates, concentration of the catalyzing enzyme, concentrations of
possiblemodifiers, and by certain parameters. We introduce different kinetic laws for
reversible and irreversible reactions, for reactions with varying numbers of sub-
strates, and for reactions that are subject to inhibition or activation. The derivations of
the rate laws are shown and the resulting restrictions for their validity and applicability.
Saturation andsigmoidal kinetics are explained. The connection to thermodynamics is
shown.

Deterministic kinetic modeling of individual biochemical reactions has a long
history. The Michaelis–Menten model for the rate of an irreversible one-substrate
reaction is an integral part of biochemistry, and the Km value is amajor characteristic
of the interaction between enzyme and substrate. Biochemical reactions are catalyzed
by enzymes, i.e., specific proteins which often function in complex with cofactors.
They have a catalytic center, are usually highly specific, and remain unchanged by the
reaction. One enzymemolecule can catalyze thousands of reactions per second (this
so-called turnover number ranges from 102 s�1 to 107 s�1). Enzyme catalysis leads to
a rate acceleration of about 106- up to 1012-fold compared to the noncatalyzed,
spontaneous reaction.
In this chapter, we make you familiar with the basic concepts of the mass action

rate law. We will show how you can derive and apply more advanced kinetic
expressions. The effect of enzyme inhibitors and activators will be discussed. The
thermodynamic foundations and constraints are introduced.
The basic quantities are the concentration S of a substance S, i.e., the number n of

molecules (or, alternatively, moles) of this substance per volume V, and the rate v of a
reaction, i.e., the change of concentration S per time t. This type of modeling is
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Hans Lehrach, and Ralf Herwig
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macroscopic and phenomenological, compared to the microscopic approach, where
single molecules and their interactions are considered. Chemical and biochemical
kinetics rely on the assumption that the reaction rate v at a certain point in time and
space can be expressed as a unique function of the concentrations of all substances at
this point in time and space. Classical enzyme kinetics assumes for sake of simplicity
a spatial homogeneity (the �well-stirred� test tube) and no direct dependency of the
rate on time

vðtÞ ¼ vðSðtÞÞ: ð2:1Þ
Inmore advancedmodeling approaches, longing towardwhole-cellmodeling, spatial
inhomogeneities are taken into account, paying tribute to the fact that many
components are membrane-bound or that cellular structures hinder the free move-
ment of molecules. But, in the most cases, one can assume that diffusion is rapid
enough to allow for an even distribution of all substances in space.

2.1.1
The Law of Mass Action

Biochemical kinetics is based on the mass action law, introduced by Guldberg and
Waage in the nineteenth century [1–3]. It states that the reaction rate is proportional to
the probability of a collision of the reactants. This probability is in turn proportional to
the concentration of reactants to the power of the molecularity, that is the number in
which they enter the specific reaction. For a simple reaction such as

S1þ S2 Ð 2P; ð2:2Þ
the reaction rate reads

v ¼ vþ�v� ¼ kþ S1 � S2�k�P2: ð2:3Þ

where v is the net rate; vþ and v� are the rates of the forward and backward reactions;
and kþ and k� are the kinetic or rate constants, i.e., the respective proportionality
factors.
The molecularity is 1 for S1 and for S2 and 2 for P, respectively. If we measure the

concentration inmol l�1 (orM) and the time in seconds (s), then the rate has the unit
M s�1. Accordingly, the rate constants for bimolecular reactions have the unit
M�1 s�1. Rate constants of monomolecular reactions have the dimension s�1. The
general mass action rate law for a reaction transforming mi substrates with con-
centrations Si into mj products with concentrations Pj reads

v ¼ vþ�v� ¼ kþ
Ymi

i¼1
Snii �k�

Ymj

j¼1
P
nj
j ; ð2:4Þ

where ni and nj denote the respective molecularities of Si and Pj in this reaction.
The equilibrium constant Keq (we will also use the simpler symbol q) characterizes

the ratio of substrate and product concentrations in equilibrium (Seq andPeq), i.e., the
statewith equal forward and backward rate. The rate constants are related toKeq in the
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following way:

Keq ¼ kþ
k�
¼

Qmj

j¼1
P
nj
j;eq

Qmi

i¼1
Snii;eq

ð2:5Þ

The relation between the thermodynamic and the kinetic description of biochemical
reactions will be outlined in Section 2.1.2.
The equilibrium constant for the reaction given in Eq. (2.2) is Keq ¼

P2
eq=ðS1;eq � S2;eqÞ. The dynamics of the concentrations away from equilibrium is

described by the ODEs.

d
dt
S1 ¼ d

dt
S2 ¼ �v and

d
dt
P ¼ 2v: ð2:6Þ

The time course of S1, S2, and P is obtained by integration of these ODEs (see
Section 2.3).

Example 2.1

The kinetics of a simple decay like

S! ð2:7Þ
is described by v¼ kS and dS/dt¼�kS. Integration of this ODE from time t¼ 0
with the initial concentration S0 to an arbitrary time t with concentration S(t),Ð S
S0
dS=S ¼ � Ð tt¼0 k dt, yields the temporal expression SðtÞ ¼ S0e�kt.

2.1.2
Reaction Kinetics and Thermodynamics

An important purpose of metabolism is to extract energy from nutrients, which is
necessary for the synthesis of molecules, growth, and proliferation. We distinguish
between energy-supplying reactions, energy-demanding reactions, and energetically
neutral reactions. The principles of reversible thermodynamics and their application
to chemical reactions allow understanding of energy circulation in the cell.
A biochemical process is characterized by the direction of the reaction, by whether

it occurs spontaneously or not, and by the position of the equilibrium. The first law of
thermodynamics, i.e., the law of energy conservation, tells us that the total energy of a
closed system remains constant during any process. The second law of thermody-
namics states that a process occurs spontaneous only if it increases the total entropy
of the system. Unfortunately, entropy is usually not directly measurable. A more
suitable measure is the Gibbs free energyG, which is the energy capable of carrying
out work under isotherm–isobar conditions, i.e., at constant temperature and
constant pressure. The change of the free energy is given as
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DG ¼ DH�TDS; ð2:8Þ
where DH is the change in enthalpy, DS the change in entropy, and T the absolute
temperature in Kelvin. DG is a measure for the driving force, the spontaneity of a
chemical reaction. The reaction proceeds spontaneous under release of energy, if
DG< 0 (exergonic process). IfDG> 0, then the reaction is energetically not favorable
and will not occur spontaneously (endergonic process). DG¼ 0 means that the
system has reached its equilibrium. Endergonic reactionsmay proceed if they obtain
energy from a strictly exergonic reaction by energetic coupling. In tables, free energy
is usually given for standard conditions (DG�), i.e., for a concentration of the reaction
partners of 1M, a temperature of T¼ 298K, and, for gaseous reactions, a pressure of
p¼ 98, 1 kPa¼ 1 atm. The unit is kJmol�1. Free energy differences satisfy a set of
relations as follows. The free energy difference for a reaction can be calculated from
the balance of free energies of formation of its products and substrates:

DG ¼
X

GP�
X

GS: ð2:9Þ

The enzyme cannot change the free energies of the substrates and products of a
reaction, neither their difference, but it changes the way the reaction proceeds
microscopically, the so-called reaction path, thereby lowering the activation energy
for the reaction. The Transition State Theory explains this as follows. During the
course of a reaction, the metabolites must pass one or more transition states of
maximal free energy, in which bonds are solved or newly formed. The transition state
is unstable; the respective molecule configuration is called an activated complex. It
has a lifetime of around one molecule vibration, 10�14–10�13 s, and it can hardly be
experimentally verified. The difference DG# of free energy between the reactants and
the activated complex determines the dynamics of a reaction: the higher this
difference, the lower the probability that the molecules may pass this barrier and
the lower the rate of the reaction. The value of DG# depends on the type of altered
bonds, on steric, electronic, or hydrophobic demands, and on temperature.
Figure 2.1 presents a simplified view of the reaction course. The substrate and the

product are situated in localminima of the free energy; the active complex is assigned
to the localmaximum. The free energy differenceDG is proportional to the logarithm
of the equilibrium constant Keq of the respective reaction:

DG ¼ �RT ln Keq; ð2:10Þ
where R is the gas constant, 8.314 Jmol�1 K�1. The value of DG# corresponds to the
kinetic constant kþ of the forward reaction (Eqs. (2.3)–(2.5)) by DG#¼�RT ln kþ ,
while DG# þ DG is related to the rate constant k� of the backward reaction.
The interaction of the reactants with an enzyme may alter the reaction path and,

thereby, lead to lower values of DG# as well as higher values of the kinetic constants.
Furthermore, the free energymay assumemore local minima andmaxima along the
path of reaction. They are related to unstable intermediary complexes. Values for the
difference of free energy for some biologically important reactions are given in
Table 2.1.
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A biochemical reaction is reversible if it may proceed in both directions, leading to
a positive or negative sign of the rate v. The actual direction depends on the current
reactant concentrations. In theory, every reaction should be reversible. In practice, we
can considermany reactions as irreversible since (i) reactants in cellular environment
cannot assume any concentration, (ii) coupling of a chemical conversion to ATP
consumption leads to a severe drop in free energy and therefore makes a reaction
reversal energetically unfavorable, and (iii) for compound destruction, such as
protein degradation, reversal by chance is extremely unlikely.
The detailed consideration of enzyme mechanisms by applying the mass action

law for the single events has led to a number of standard kinetic descriptions, which
will be explained in the following.

Table 2.1 Values of DG00 and Keq for some important reactionsa.

Reactions DG00 (kJ mol�1)

2H2þO2! 2H2O �474
2H2O2! 2H2OþO2 �99
PPiþH2O! 2Pi �33.49
ATPþH2O!ADPþPi �30.56
Glucose-6-phosphateþH2O!GlucoseþPi �13.82
GlucoseþPi!Glucose-6-phosphateþH2O þ13.82
Glucose-1-phosphate!Glucose-6-phosphate �7.12
Glucose-6-phosphate!Fructose-6-phosphate þ1.67
Glucoseþ 6O2! 6CO2þ 6H2O �2890
aSource: ZITAT: Lehninger, A.L. Biochemistry, 2nd edition, New York, Worth, 1975, p. 397.
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Figure 2.1 Change of free energy along the course of a reaction.
The substrate and the product are situated in local minima of the
free energy; the active complex is assigned to the local maximum.
The enzyme may change the reaction path and thereby lower the
barrier of free energy.
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2.1.3
Michaelis–Menten Kinetics

Brown [4] proposed an enzymaticmechanism for invertase, catalyzing the cleavage of
saccharose to glucose and fructose. This mechanism holds in general for all one-
substrate reactions without backward reaction and effectors, such as

EþS�! �
k1

k�1
ES�!k2 EþP: ð2:11Þ

It comprises a reversible formation of an enzyme–substrate complex ES from the
free enzyme E and the substrate S and an irreversible release of the product P. The
ODE system for the dynamics of this reaction reads

dS
dt
¼ �k1E � Sþ k�1ES; ð2:12Þ

dES
dt
¼ k1E � S�ðk�1þ k2ÞES; ð2:13Þ

dE
dt
¼ �k1E � Sþðk�1þ k2ÞES; ð2:14Þ

dP
dt
¼ k2ES: ð2:15Þ

The reaction rate is equal to the negative decay rate of the substrate as well as to the
rate of product formation:

v ¼ � dS
dt
¼ dP

dt
: ð2:16Þ

This ODE system (Eqs. (2.12)–(2.16)) cannot be solved analytically. Different
assumptions have been used to simplify this system in a satisfactory way. Michaelis
and Menten [5] considered a quasi-equilibrium between the free enzyme and the
enzyme–substrate complex, meaning that the reversible conversion of E and S to ES
is much faster than the decomposition of ES into E and P, or in terms of the kinetic
constants,

k1; k�1 � k2: ð2:17Þ

Briggs and Haldane [6] assumed that during the course of reaction a state is
reached where the concentration of the ES complex remains constant, the so-called
quasi-steady state. This assumption is justified only if the initial substrate concen-
tration ismuch larger than the enzyme concentration, Sðt ¼ 0Þ � E, otherwise such
a state will never be reached. In mathematical terms, we obtain

dES
dt
¼ 0: ð2:18Þ
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In the following, we derive an expression for the reaction rate from the ODE
system (2.12)–(2.15) and the quasi-steady-state assumption for ES. First, adding
Eqs. (2.13) and (2.14) results in

dES
dt
þ dE

dt
¼ 0 or Etotal ¼ EþES ¼ constant: ð2:19Þ

This expression shows that enzyme is neither produced nor consumed in this
reaction; it may be free or part of the complex, but its total concentration remains
constant. Introducing (2.19) into (2.13)under thesteady-stateassumption(2.18)yields

ES ¼ k1EtotalS
k1Sþ k�1þ k2

¼ EtotalS
Sþðk�1þ k2Þ=k1 : ð2:20Þ

For the reaction rate, this gives

v ¼ k2EtotalS
Sþððk�1þ k2Þ=k1Þ : ð2:21Þ

In enzyme kinetics, it is convention to present Eq. (2.21) in a simpler form, which
is important in theory and practice

v ¼ VmaxS
SþKm

: ð2:22Þ

Equation (2.22) is the expression for Michaelis–Menten kinetics. The parameters
have the following meaning: the maximal velocity,

Vmax ¼ k2Etotal; ð2:23Þ
is the maximal rate that can be attained, when the enzyme is completely saturated
with substrate. The Michaelis constant,

Km ¼ k�1þ k2
k1

; ð2:24Þ

is equal to the substrate concentration that yields the half-maximal reaction rate. For
the quasi-equilibrium assumption (Eq. (2.17)), it holds that Kmffi k�1/k1. The
maximum velocity divided by the enzyme concentration (here k2¼ vmax/Etotal) is
often called the turnover number, kcat. Themeaning of the parameters is illustrated in
the plot of rate versus substrate concentration (Figure 2.2).

2.1.3.1 How to Derive a Rate Equation
Below, we will present some enzyme kinetic standard examples to derive a rate
equation. Individual mechanisms for your specific enzyme of interest may be more
complicated or merely differ from these standards. Therefore, we summarize here
the general way of deriving a rate equation.

1. Draw a wiring diagram of all steps to consider (e.g., Eq. (2.11)). It contains all
substrates and products (S and P) and n free or bound enzyme species (E and ES).
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2. The right sites of the ODEs for the concentrations changes sum up the rates of all
steps leading to or away from a certain substance (e.g., Eqs. (2.12)–(2.15)). The
rates follow mass action kinetics (Eq. (2.3)).

3. The sum of all enzyme-containing species is equal to the total enzyme concen-
trationEtotal (the right site of all differential equations for enzyme species sums up
to zero). This constitutes one equation.

4. The assumption of quasi-steady state for n� 1 enzyme species (i.e., setting the
right sites of the respective ODEs equal to zero) together with (3.) result in n
algebraic equations for the concentrations of the n enzyme species.

5. The reaction rate is equal to the rate of product formation (e.g., Eq. (2.16)). Insert
the respective concentrations of enzyme species resulting from (4.).

2.1.3.2 Parameter Estimation and Linearization of the Michaelis–Menten Equation
To assess the values of the parameters Vmax and Km for an isolated enzyme, one
measures the initial rate for different initial concentrations of the substrate. Since
the rate is a nonlinear function of the substrate concentration, one has to determine
the parameters by nonlinear regression. Another way is to transform Eq. (2.22) to a
linear relation between variables and then apply linear regression.
The advantage of the transformed equations is that one may read the parameter

value more or less directly from the graph obtained by linear regression of the
measurement data. In the plot by Lineweaver and Burk [7] (Table 2.2), the values for
Vmax and Km can be obtained from the intersections of the graph with the ordinate
and the abscissa, respectively. The Lineweaver–Burk plot is also helpful to easily
discriminate different types of inhibition (see below). The drawback of the trans-
formed equations is that they may be sensitive to errors for small or high substrate

V
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Figure 2.2 Dependence of reaction rate v on substrate
concentration S in Michaelis–Menten kinetics. Vmax denotes the
maximal reaction rate that can be reached for large substrate
concentration.Km is the substrate concentration that leads to half-
maximal reaction rate. For low substrate concentration, v
increases almost linearly with S, while for high substrate
concentrations v is almost independent of S.
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concentrations or rates. Eadie and Hofstee [8] and Hanes and Woolf [9] have
introduced other types of linearization to overcome this limitation.

2.1.3.3 The Michaelis–Menten Equation for Reversible Reactions
In practice, many reactions are reversible. The enzyme may catalyze the reaction in
both directions. Consider the following mechanism:

EþS�! �
k1

k�1
ES�! �

k2

k�2
EþP ð2:25Þ

The product formation is given by

dP
dt
¼ k2ES�k�2E �P ¼ v: ð2:26Þ

The respective rate equation reads

v ¼ Etotal
Sq�P

Sk1=ðk�1k�2Þþ 1=k�2þ k2=ðk�1k�2ÞþP=k�1

¼ ðV
for
max=KmSÞS�ðVback

max =KmPÞP
1þ S=KmSþP=KmP

:

ð2:27Þ

While the parameters k�1 and k�2 are the kinetic constants of the individual reaction
steps, the phenomenological parameters V for

max and V
back
max denote themaximal velocity

in forward or backward direction, respectively, under zero product or substrate
concentration, and the phenomenological parameters KmS and KmP denote the
substrate or product concentration causing half maximal forward or backward rate.
They are related in the following way [10]:

Keq ¼ V for
maxKmP

Vback
max KmS

: ð2:28Þ

2.1.4
Regulation of Enzyme Activity by Effectors

Enzymes may immensely increase the rate of a reaction, but this is not their only
function. Enzymes are involved in metabolic regulation in various ways. Their
production and degradation is often adapted to the current requirements of the
cell. Furthermore, they may be targets of effectors, both inhibitors and activators.
The effectors are small molecules, or proteins, or other compounds that influence

the performance of the enzymatic reaction. The interaction of effector and enzyme
changes the reaction rate. Such regulatory interactions that are crucial for the fine-
tuning of metabolism will be considered here [11].
Basic types of inhibition are distinguished by the state, in which the enzyme may

bind the effector (i.e., the free enzyme E, the enzyme–substrate complex ES, or both),
and by the ability of different complexes to release the product. The general pattern of
inhibition is schematically represented in Figure 2.3. The different types result, if
some of the interactions may not occur.
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The rate equations are derived according to the following scheme:

1. Consider binding equilibriums between compounds and their complexes:

Kmffi k�1
k1
¼E �S

ES
;KI;3¼ k�3

k3
¼E �I

EI
;KI;4¼ k�4

k4
¼ES �I

ESI
;KI;5¼ k�5

k5
¼EI �S

ESI
:

ð2:29Þ

Note that, if all reactionsmay occur, theWegscheider condition [12] holds in the form

k1k4
k�1k�4

¼ k3k5
k�3k�5

; ð2:30Þ

whichmeans that the difference in the free energies between two compounds (e.g., E
and ESI) is independent of the choice of the reaction path (here via ES or via EI).

2. Take into account themoiety conservation for the total enzyme (include only those
complexes, which occur in the course of reaction):

Etotal ¼ EþESþEIþESI: ð2:31Þ
3. The reaction rate is equal to the rate of product formation

v ¼ dP
dt
¼ k2ESþ k6ESI: ð2:32Þ

Equations (2.29)–(2.31) constitute four independent equations for the four unknown
concentrations of E, ES, EI, and ESI. Their solution can be inserted into Eq. (2.32).
The effect of the inhibitor depends on the concentrations of substrate and inhibitor
and on the relative affinities to the enzyme. Table 2.3 lists the different types of
inhibition for irreversible and reversible Michaelis–Menten kinetics together with
the respective rate equations.

ESE+S E+P
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1 k2

I

k -1
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3
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k
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Figure 2.3 General scheme of inhibition in Michaelis–Menten
kinetics. Reactions 1 and 2 belong to the standard scheme of
Michaelis–Menten kinetics. Competitive inhibition is given, if in
addition reaction 3 (and not reactions 4, 5, or 6) occurs.
Uncompetitive inhibition involves reactions 1, 2, and 4, and
noncompetitive inhibition comprises reactions 1, 2, 3, 4, and 5.
Occurrence of reaction 6 indicates partial inhibition.
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In the case of competitive inhibition, the inhibitor competeswith the substrate for the
binding site (or inhibits substrate bindingbybindingelsewhere to the enzyme)without
being transformed itself. An example for this type is the inhibition of succinate
dehydrogenase by malonate. The enzyme converts succinate to fumarate forming a
doublebond.Malonatehastwocarboxylgroups, likethepropersubstrates,andmaybind
totheenzyme,buttheformationofadoublebondcannottakeplace.Sincesubstratesand
inhibitorcompeteforthebindingsites,ahighconcentrationofoneofthemmaydisplace
the other one. For very high substrate concentrations, the same maximal velocity as
without inhibitor is reached, but the effective Km value is increased.
In the case of uncompetitive inhibition, the inhibitor binds only to the ES complex.

The reasonmay be that the substrate binding caused a conformational change, which
opened a newbinding site. Since S and I do not compete for binding sites, an increase
in the concentration of S cannot displace the inhibitor. In the presence of inhibitor,
the original maximal rate cannot be reached (lower Vmax). For example, an inhibitor
concentration of I¼KI,4 halves the Km-value as well as Vmax. Uncompetitive inhibi-
tion occurs rarely for one-substrate reactions, but more frequently in the case of two
substrates. One example is inhibition of arylsulphatase by hydracine.
Noncompetitive inhibition is present, if substrate binding to the enzyme does not

alter the binding of the inhibitor. There must be different binding sites for substrate
and inhibitor. In the classical case, the inhibitor has the same affinity to the enzyme
with or without bound substrate. If the affinity changes, this is called mixed
inhibition. A standard example is inhibition of chymotrypsion by Hþ -ions.
If the product may also be formed from the enzyme–substrate–inhibitor complex,

the inhibition is only partial. For high rates of product release (high values of k6), this
can even result in an activating instead of an inhibiting effect.
The general types of inhibition, competitive, uncompetitive, and noncompetitive

inhibition also apply for the reversible Michaelis–Menten mechanism. The respec-
tive rate equations are also listed in Table 2.3.

2.1.4.1 Substrate Inhibition
A common characteristic of enzymatic reaction is the increase of the reaction rate
with increasing substrate concentration S up to the maximal velocity Vmax. But in
some cases, a decrease of the rate above a certain value of S is recorded. A possible
reason is the binding of a further substrate molecule to the enzyme–substrate
complex yielding the complex ESS that cannot forma product. This kind of inhibition
is reversible if the second substrate can be released. The rate equation can be derived
using the scheme of uncompetitive inhibition by replacing the inhibitor by another
substrate. It reads

v ¼ k2ES ¼ VmaxS
KmþSð1þðS=KIÞÞ : ð2:33Þ

This expression has an optimum, i.e., a maximal value of v, at

Sopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
KmKI
p

with vopt ¼ Vmax

1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Km=KI

p : ð2:34Þ
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The dependence of v on S is shown in Figure 2.4. A typical example for substrate
inhibition is the binding of two succinate molecules to malonate dehydrogenase,
which possesses two binding pockets for the carboxyl group. This is schematically
represented in Figure 2.4.

2.1.4.2 Binding of Ligands to Proteins
Every molecule that binds to a protein is a ligand, irrespective of whether it is subject
of a reaction or not. Below we consider binding to monomer and oligomer proteins.
In oligomers, there may be interactions between the binding sites on the subunits.
Consider binding of one ligand (S) to a protein (E ) with only one binding site:

EþSÐ ES ð2:35Þ
The binding constant KB is given by

KB ¼ ES
E � S
� �

eq

: ð2:36Þ

The reciprocal ofKB is the dissociation constantKD. The fractional saturation Yof the
protein is determined by the number of subunits that have bound ligands, divided by
the total number of subunits. The fractional saturation for one subunit is

Y ¼ ES
Etotal

¼ ES
ESþE

¼ KB � S
KB � Sþ 1

: ð2:37Þ

The plot of Y versus S at constant total enzyme concentration is a hyperbola, like the
plot of v versusS in theMichaelis–Menten kinetics (Eq. (2.22)). At a processwhere the
binding of S to E is the first step followed by product release and where the initial
concentration of S is much higher than the initial concentration of E, the rate is
proportional to the concentration of ES and it holds

Figure 2.4 Plot of reaction rate v against
substrate concentration S for an enzyme with
substrate inhibition. The upper curve shows
Michaelis–Menten kinetics without inhibition,
the lower curves show kinetics for the indicated
values of binding constant KI. Parameter values:
Vmax¼ 1, Km¼ 1. The left part visualizes a

possible mechanism for substrate inhibition:
The enzyme (gray item) has two binding pockets
to bind different parts of a substrate molecule
(upper scheme). In case of high substrate
concentration, two different molecules may
enter the binding pockets, thereby preventing the
specific reaction (lower scheme).
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v
Vmax

¼ ES
Etotal

¼ Y : ð2:38Þ

If the protein has several binding sites, then interactions may occur between these
sites, i.e., the affinity to further ligands may change after binding of one or more
ligands. This phenomenon is called cooperativity. Positive or negative cooperativity
denote increase or decrease in the affinity of the protein to a further ligand,
respectively. Homotropic or heterotropic cooperativity denotes that the binding to
a certain ligand influences the affinity of the protein to a further ligand of the same or
another type, respectively.

2.1.4.3 Positive Homotropic Cooperativity and the Hill Equation
Consider a dimeric protein with two identical binding sites. The binding to the first
ligand facilitates the binding to the second ligand.

E2þS �!slow E2S

E2SþS �!fast E2S2
ð2:39Þ

where E is the monomer and E2 is the dimer. The fractional saturation is given by

Y ¼ E2Sþ 2 �E2S2
2 �E2;total

¼ E2Sþ 2 � E2S2
2 �E2þ 2 �E2Sþ 2 �E2S2

: ð2:40Þ

If the affinity to the second ligand is strongly increase by binding to the first ligand,
then E2S will react with S as soon as it is formed and the concentration of E2S can be
neglected. In the case of complete cooperativity, i.e., every protein is either empty or
fully bound, Eq. (2.39) reduces to

E2þ 2S!E2S2 ð2:41Þ
The binding constant reads

KB ¼ E2S2
E2 � S2 ; ð2:42Þ

and the fractional saturation is

Y ¼ 2 �E2S2
2 �E2;total

¼ E2S2
E2þE2S2

¼ KB � S2
1þKB � S2 : ð2:43Þ

Generally, for a protein with n subunits, it holds:

v ¼ Vmax �Y ¼ Vmax �KB � Sn
1þKB � Sn : ð2:44Þ

This is the general form of the Hill equation. To derive it, we assumed complete
homotropic cooperativity. The plot of the fractional saturation Y versus substrate
concentration S is a sigmoid curve with the inflection point at 1/KB. The quantity n
(often �h� is used instead) is termed the Hill coefficient.
The derivation of this expression was based on experimental findings concerning

the binding of oxygen to hemoglobin (Hb) [13, 14]. In 1904, Bohr et al. found that the

2.1 Kinetic Modeling of Enzymatic Reactions j27



plot of the fractional saturation ofHbwith oxygen against the oxygen partial pressure
had a sigmoid shape.Hill (1913) explained thiswith interactions between the binding
sites located at the Hb subunits [14]. At this time, it was already known that every
subunit Hb binds one molecule of oxygen. Hill assumed complete cooperativity and
predicted an experimental Hill coefficient of 2.8. Today it is known that Hb has four
binding sites, but that the cooperativity is not complete. The sigmoid binding
characteristic has the advantage that Hb binds strongly to oxygen in the lung with
a high oxygen partial pressure while it can release O2 easily in the body with low
oxygen partial pressure.

2.1.4.4 The Monod–Wyman–Changeux Model for Sigmoid Kinetics
The Monod model [15] explains sigmoid enzyme kinetics by taking into account the
interaction of subunits of an enzyme.Wewill show here themain characteristics and
assumptions of this kinetics. The full derivation is given in the web material. It uses
the following assumptions: (i) the enzyme consists of n identical subunits, (ii) each
subunit can assume an active (R) or an inactive (T) conformation, (iii) all subunits
change their conformations at the same time (concerted change), and (iv) the
equilibrium between the R and the Tconformation is given by an allosteric constant

L ¼ T0

R0
: ð2:45Þ

The binding constants for the active and inactive conformations are given by KR and
KT, respectively. If substrate molecules can only bind to the active form, i.e., ifKT¼ 0,
the rate can be expressed as

V ¼ VmaxKRS
ð1þKRSÞ

1
½1þfL=ðð1þKRSÞnÞg� ; ð2:46Þ

where the first factor (VmaxKRS)/(1 þ KRS) corresponds to the Michaelis–Menten
rate expression, while the second factor [1 þ (L/(1 þ KRS)

n)]�1 is a regulatory factor
(Figure 2.5).
For L¼ 0, the plot v versus S is hyperbola as in Michaelis–Menten kinetics. For

L> 0, we obtain a sigmoid curve shifted to the right. A typical value for the allosteric
constant is Lffi 104.
Up to now we considered in the model of Monod, Wyman, and Changeux only

homotropic and positive effects. But this model is also well suited to explain the
dependence of the reaction rate on activators and inhibitors. Activators A bind only to
the active conformation and inhibitors I bind only to the inactive conformation. This
shifts the equilibrium to the respective conformation. Effectively, the binding to
effectors changes L:

L0 ¼ L
ð1þKIIÞn
ð1þKAAÞn ; ð2:47Þ

where KI and KA denote binding constants. The interaction with effectors is a
heterotropic effect. An activator weakens the sigmoidity, while an inhibitor strength-
ens it.
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A typical example for an enzyme with sigmoid kinetics that can be described with
the Monod model is the enzyme phosphofructokinase, which catalyzes the transfor-
mation of fructose-6-phosphate and ATP to fructose-1,6-bisphosphate. AMP, NH4,
and Kþ are activators, ATP is an inhibitor.

2.1.5
Generalized Mass Action Kinetics

Mass action kinetics (see Section 2.1.1) has experienced refinements in different
ways. The fact that experimental results frequently do not show the linear depen-
dence of rate on concentrations as assumed in mass action laws is acknowledged in
power law kinetics used in the S-systems approach [16]. Here, the rate reads

vj
v0j
¼ kj

Yn
i¼1

Si
S0i

� �gj;i

; ð2:48Þ

where the concentrations Si and rates vj are normalized to some standard value
denoted by superscript 0, and gi,j is a real number instead of an integer as in
Eq. (2.4). The normalization yields dimensionless quantities. The power law
kinetics can be considered as a generalization of the mass action rate law. The
exponent gi,j is equal to the concentration elasticities, i.e., the scaled derivatives of
rates with respect to substrate concentrations (see Section 2.3, Eq. (2.107)). Sub-
strates and effectors (their concentrations both denoted by Si) enter expression (2.48)
in the same formal way, but the respective exponents gi,j will be different. The
exponents gi,j will be positive for substrates and activators, but should assume a
negative value for inhibitors.
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Figure 2.5 Model of Monod, Wyman, and
Changeux: Dependence of the reaction rate on
substrate concentration for different values of
the allosteric constant L, according to equation.
The binding constants for the active and inactive
conformations are given by KR and KT,
respectively. If substratemolecules can only bind
to the active form, i.e., if KT¼ 0, the rate can be
expressed as

V ¼ VmaxKRS
ð1þKRSÞ

1
½1þfL=ðð1þKRSÞnÞg�, (2.46).

Parameters: Vmax¼ 1, n¼ 4, KR¼ 2, KT¼ 0. The
value of L is indicated at the curves. Obviously,
increasing value of L causes stronger sigmoidity.
The influence of activators or inhibitors
(compareEq. (2.47)) is illustratedwith the dotted
line for KII¼ 2 and with the dashed line for
KAA¼ 2 (L¼ 104 in both cases).
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2.1.6
Approximate Kinetic Formats

In metabolic modeling studies, approximate kinetic formats are used (for a recent
review, see [17]). They preassume that each reaction rate vj is proportional to the
enzyme concentration Ej. The rates, enzyme concentrations, and substrate concen-
trations are normalized with respect to a reference state, which is usually a steady
state. This leads to the general expression

vj
v0j
¼ Ej

E0
j

� f S

S 0 ; e
0
c

� �
; ð2:49Þ

where ec is the matrix of concentration elasticities as explained in Section 2.3. One
example is the so-called lin-log kinetics

v
v0
¼ E

E 0 Iþ e0c ln
S

S 0

� �
; ð2:50Þ

where I is the r� r identity matrix. Another example is an approximation of the
power-law kinetics

ln
v
v0
¼ ln

E

E 0 þ e0c ln
S

S 0 : ð2:51Þ

Approximative kinetics simplify the determination of model parameters and,
especially, of concentration elasticities, since Eq. (2.51) is a set of linear equations in
the elasticity coefficients.

2.1.7
Convenience Kinetics

The convenience kinetics [18] has been introduced to ease parameter estimation and
to have a kineticmechanism,where all parameters are independent of each other and
not related via the Haldane relation (Eq. (2.28)). It is a generalized form of
Michaelis–Menten kinetics that covers all possible stoichiometries, and describes
enzyme regulation by activators and inhibitors. For a reaction with stoichiometry

n�1S1þ n�2S2þ � � � $ nþ 1P1þ nþ 2P2þ � � � ; ð2:52Þ
it reads

v¼Etotal �freg

� kforcat

Q
iðSi=Km;SiÞn�i�kbackcat

Q
jðPj=Km;Pj ÞnþjQ

ið1þðSi=Km;SiÞþ ��� þðSi=Km;SiÞn�iÞþ
Q

jð1þðPj=Km;Pj Þþ ��� þðPj=Km;Pj Þnþj Þ�1
;

ð2:53Þ
with enzyme concentration Etotal and turnover rates kforcat and kbackcat . The regulatory
prefactor freg is either 1 (in case of no regulation) or a product of termsM/(KAþM) or
1þM/KA for activators and KI/(KIþM) for inhibitors. Activation constants KA and
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inhibition constants KI are measured in concentration units.M is the concentration
of the modifier.
In analogy to Michaelis–Menten kinetics, Km values denote substrate concentra-

tions, at which the reaction rate is half-maximal if the reaction products are absent;KI

and KA values denote concentrations, at which the inhibitor or activator has its half-
maximal effect. In this respect, many parameters in convenience kinetics are
comparable to the kinetic constants measured in enzyme assays. This is important
for parameter estimation (see Section 4.2).
To facilitate thermodynamic independence of the parameters, we introduce new

system parameters that can be varied independently, without violating any thermo-
dynamic constraints (see Section 2.1.1). For each reaction, we define the velocity
constant KV ¼ ðkforcat � kbackcat Þ1=2 (geometric mean of the turnover rates in both direc-
tions). Given the equilibrium and velocity constants, the turnover rates can bewritten
as kforcat ¼ KVðKeqÞ�1=2; kbackcat ¼ KVðKeqÞ1=2. The equilibrium constants Keq can be
expressed by independent parameters such as the Gibbs free energies of formation:
for each substance i, we define the dimensionless energy constant
KG
i ¼ expðGið0Þ=ðRTÞÞ with Boltzmann�s gas constant R¼ 8.314 J (mol�1 K�1) and

absolute temperature T. The equilibrium constants then satisfy lnKeq¼�NTlnKG.

2.2
Structural Analysis of Biochemical Systems

Summary

We discuss basic structural and dynamic properties of biochemical reaction net-
works.We introduce a stoichiometric description of networks and learn howmoieties
and fluxes are balanced within networks.
The basic elements of a metabolic or regulatory network model are

1. the compounds with their concentrations or activities and
2. the reactions or transport processes changing the concentrations or activities of

the compounds.

Inbiologicalenvironments, reactionsareusually catalyzedbyenzymes,andtransport
steps are carried out by transport proteins or pores, thus they can be assigned to
identifiable biochemical compounds. In the following, wewill mainly refer tometabolic
networks. However, the analysis can also be applied to regulatory networks, if different
activity states or complexes of regulatory molecules are considered as individual
compounds that are converted into each other by modifying reactions.

2.2.1
System Equations

Stoichiometric coefficients denote the proportion of substrate and product molecules
involved in a reaction. For example, for the reaction
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S1þ S2 Ð 2P; ð2:54Þ
the stoichiometric coefficients of S1, S2, and P are �1, �1, and 2, respectively. The
assignment of stoichiometric coefficients is not unique. We could also argue that for
the production of one mole P, half a mole of each S1 and S2 have to be used and,
therefore, choose �1/2, �1/2, and 1. Or, if we change the direction of the reaction,
then we may choose 1, 1, and �2.
The change of concentrations in time can be described using ODEs. For the

reaction depicted in Eq. (2.54) and the first choice of stoichiometric coefficients, we
obtain

dS1
dt
¼ �v; dS2

dt
¼ �v; and

dP
dt
¼ 2v: ð2:55Þ

This means that the degradation of S1 with rate v is accompanied by the
degradation of S2 with the same rate and by the production of P with the double
rate.
For a metabolic network consisting of m substances and r reactions, the system

dynamics is described by the system equations (or balance equations, since the balance
of substrate production and degradation is considered) [19, 20]:

dSi
dt
¼
Xr
j¼1

nijvj for i ¼ 1; . . . ;m: ð2:56Þ

The quantities nij are the stoichiometric coefficients of the ith metabolite in the jth
reaction. Here, we assume that the reactions are the only reason for concentration
changes and that no mass flow occurs due to convection or to diffusion. The balance
equations (2.56) can also be applied, if the system consists of several compartments.
In this case, every compound in different compartments has to be considered as an
individual compound and transport steps are formally considered as reactions
transferring the compound belonging to one compartment into the same compound
belonging to the other compartment. In case, volumedifferencesmust be considered
(see Section 3.4).
The stoichiometric coefficients nij assigned to the compounds Si and the reactions

vj can be comprehended into the stoichiometric matrix

N ¼ fnijg for i ¼ 1; . . . ;m and j ¼ 1; . . . ; r; ð2:57Þ

where each column belongs to a reaction and each row to a compound. Table 2.4
shows some examples for reaction networks and their respective stoichiometric
matrices.
Note that all reactions may be reversible. In order to determine the signs is N, the

direction of the arrows is artificially assigned as positive �from left to right� and �from
top down.� If the net flow of a reaction proceeds in the opposite direction as the arrow
indicates, the value of rate v is negative.
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Altogether, the mathematical description of the metabolic system consists of a
vector S¼ (S1, S2, Sn)

Tof concentrations values, a vector v¼ (v1, v2,. . .,vr)
Tof reaction

rates, a parameter vector p¼ (p1, p2, . . ., pm)
T, and the stoichiometric matrix N. If the

system is in steady state, we can also consider the vector J¼ (J1, J2,. . .,Jr)
Tcontaining

the steady-state fluxes. With these notions, the balance equation reads

dS
dt
¼ Nv; ð2:58Þ

a compact form that is suited for various types of analysis.

Table 2.4 Different reaction networks and their stoichiometric matricesa.

Network Stoichiometric matrix

N1 v1 S4 + 2S5S1 + S2 + S3 N ¼

�1
�1
�1
1
2

0
BBBB@

1
CCCCA

N2 53 421 vv vvv S4S3S2S1 N ¼
1 �1 0 0 0
0 1 �1 0 0
0 0 1 �1 0
0 0 0 1 �1

0
BB@

1
CCA

N3 S1

v1
v2

v3
N ¼ ð 1 �1 �1 Þ

N4
S1 2S2

v1

v4

v2 v3
S2

S3

N ¼
1 �1 0 �1
0 2 �1 0
0 0 0 1

0
@

1
A

N5 S1

S2

S3v1

v2

v3 S2

S3

N ¼
1 �1 �1
0 �1 1
0 1 �1

0
@

1
A

N6

S1

S S

v1 v2

v3
2 3v4

S4v5

N ¼
1�1 0 0 0
0 0 �1 1 0
0 0 1 �1 0
0 0 0 0 1

0
BB@

1
CCA

aNote that external metabolites are neither drawn in the network nor included in the stoichiometric
matrix. Thin arrows denote reactions, bold arrows denote activation.
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2.2.2
Information Encoded in the Stoichiometric Matrix N

The stoichiometric matrix contains important information about the structure of the
metabolic network.Using the stoichiometricmatrix, wemay calculatewhich combina-
tionsof individualfluxesarepossible insteadystate (i.e., calculate theadmissiblesteady-
statefluxspace).Wemayeasilyfindoutdeadendsandunbranchedreactionpathways.In
addition, we may find out the conservation relations for the included reactants.
In steady state, it holds that

dS
dt
¼ Nv ¼ 0: ð2:59Þ

The right equality sign denotes a linear equation system for determination of the
rates v. From linear algebra, it is known that this equation has nontrivial solutions
only for Rank N< r. A kernel matrix K fulfilling

NK ¼ 0 ð2:60Þ

shows the respective linear dependencies [21]. The choice of the kernel is not unique.
It can be determined using the Gauss Algorithm (see mathematical textbooks). It
contains as columns r–RankN basis vectors. Every possible set J of steady-state fluxes
can be expressed as linear combination of the columns ki of K

J ¼
Xr�Rank N

i¼1
ai � ki: ð2:61Þ

The coefficients must have units corresponding to the units of reaction rates
(M s�1 or mol l�1 s�1).

Example 2.2

For the network N2 in Table 2.4, we have r¼ 5 reactions and RankN¼ 4. The kernel
matrix contains just 1¼ 5� 4 basis vectors, which are multiples of
k ¼ ð 1 1 1 1 1 ÞT. This means that in steady state, the flux through all
reactions must be equal. Network N3 comprises r¼ 3 reactions and has Rank
N¼ 1. Each representation of the kernel matrix contains 3� 1¼ 2 basis vectors, e.g.,

K ¼ ð k1 k2 Þ with k1 ¼
1
�1
0

0
@

1
A; k2 ¼

1
0
1

0
@

1
A; ð2:62Þ

and for the steady-state flux holds

J ¼ a1 � k1þa2 � k2: ð2:63Þ
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Network N6 can present a small signaling cascade. It has five reactions and Rank
N¼ 3. The resulting two basis vectors of the kernel are linear combinations of

k1 ¼ ð 1 1 0 0 0 ÞT; k2 ¼ ð 0 0 1 1 0 ÞT: ð2:64Þ
If we calculate the possible steady-state fluxes according to Eq. (2.63), we can easily
see that in every steady state, it holds that production and degradation of S1 are
balanced ( J1¼ J2) and that the fluxes through the cycle are equal ( J3¼ J4). In
addition, J5 must be equal to zero, otherwise S4 would accumulate. One could
prevent the last effect by also including the degradation of S4 into the network.

If the entries in a certain row are zero in all basis vectors, we have found an
equilibrium reaction. In any steady state, the net rate of this reaction must be zero.
For the reaction system N4 in Table 2.4, it holds that r¼ 4 and RankN¼ 3. Its kernel
consists of only one column K ¼ ð 1 1 1 0 ÞT. Hence, v4 ¼

P1
i¼1 a � 0 ¼ 0. In

any steady state, the rates of production and degradation of S3 must equal.
If all basis vectors contain the same entries for a set of rows, this indicates an

unbranched reaction path. In each steady state, the net rate of all respective reactions
is equal.

Example 2.3

Consider the reaction scheme

ð2:65ÞS S S
v1 v2 v3 v4

v6

1 2 3

v5

The system comprises r¼ 6 reactions. The stoichiometric matrix reads

N ¼
1 �1 0 0 �1 0
0 1 �1 0 0 0
0 0 1 �1 0 1

0
@

1
A

with Rank N¼ 3. Thus, the kernel matrix is spanned by three basis vectors, for
example, k1 ¼ ð 1 1 1 0 0 �1 ÞT, k2 ¼ ð 1 0 0 0 1 0 ÞT, and
k3 ¼ ð�1 �1 �1 �1 0 0 ÞT. The entries for the second and third reac-
tions are always equal, thus in any steady state, the fluxes through reactions 2 and
3 must be equal.

Up to now, we have not been concerned about (ir)reversibility of reactions in the
network. If a certain reaction is considered irreversible, this has no consequences
for the stoichiometric matrix N but rather for the kernel K. The set of vectors
belonging to K is restricted by the condition that some values may not become
negative (or positive – depending on the definition of flux direction).
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2.2.3
Elementary Flux Modes and Extreme Pathways

The definition of the term �pathway� in a metabolic network is not straightfor-
ward. A descriptive definition of a pathway is a set of subsequent reactions that
are linked by common metabolites. Typical examples include glycolysis or
different amino acid synthesis pathways. More detailed inspection of metabolic
maps like the Boehringer Chart [22] shows that metabolism is highly intercon-
nected. Pathways that are known for a long time from biochemical experience are
already hard to recognize, and it is even harder to find out new pathways, for
example in metabolic maps that have been reconstructed from sequenced
genomes of bacteria.
This problem has been elaborated in the concept of elementary flux modes [21,

23–27]. Here, the stoichiometry of a metabolic network is investigated to find out
which direct routes are possible that lead from one external metabolite to another
external metabolite. The approach takes into account that some reactions are
reversible, while others are irreversible.
A flux mode M is set of flux vectors that represent such direct routes through the

metabolic networks. In mathematical terms, it is defined as the set

M ¼ fv 2 Rr jv ¼ lv	; l > 0g; ð2:66Þ

where v	 is an r-dimensional vector (unequal to the null vector) fulfilling two
conditions: (i) steady state, i.e., Eq. (2.59), and (ii) sign restriction, i.e., the flux
directions in v	 fulfill the prescribed irreversibility relations.
AfluxmodeM comprising v is called reversible if the setM0 comprising�v is also a

fluxmode.Afluxmode is an elementaryfluxmode if it uses aminimal set of reactions
and cannot be further decomposed, i.e., the vector v cannot be represented as
nonnegative linear combination of two vectors that fulfill conditions (i) and (ii) but
contain more zero entries than v. An elementary flux mode is a minimal set of
enzymes that could operate at steady state, with all the irreversible reactions used in
the appropriate direction. The number of elementary fluxmodes is at least as high as
the number of basis vectors of the null space.

Example 2.4

The systems (A) and (B) differ by the (ir)reversibility of reaction 2.

v v v v v v(A) (B)
S1 S2 S2

S4

v1 v2 v3

v4

S0 S3 S1

S4

v1 v2 v3

v4

S0 S3

ð2:67Þ
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The elementary flux modes connect the external metabolites S0 and S3, S0 and S4, or
S3 and S4. The stoichiometricmatrix and the fluxmodes read for case (A) and case (B)

N¼ 1 �1 0 �1
0 1 �1 0

� �
; vA¼

1

1

1

0

0
BBB@
1
CCCA;

1

0

0

1

0
BBB@
1
CCCA;

0

�1
�1
1

0
BBB@

1
CCCA;

�1
�1
�1
0

0
BBB@

1
CCCA;

�1
0

0

�1

0
BBB@

1
CCCA;

0

1

1

�1

0
BBB@

1
CCCA;

and vB¼

1

1

1

0

0
BBB@
1
CCCA;

1

0

0

1

0
BBB@
1
CCCA;

�1
0

0

�1

0
BBB@

1
CCCA;

0

1

1

�1

0
BBB@

1
CCCA:

ð2:68Þ
The possible routes are illustrated in Figure 2.6.

2.2.3.1 Flux Cone
The stoichiometric analysis of biochemical network analysis can be modified by
considering only irreversible reactions (e.g., by splitting reversible reactions into two
irreversible ones). Based on such a unidirectional representation, the basis vectors
(Eq. (2.61)) form a convex cone in the flux space. Thismapping relates stoichiometric
analysis to the concepts of convex geometry as follows. The steady-state assumption
requires that aflux vector is an element of the null space of the stoichiometrymatrixN
spanned bymatrixK. A row ofK can be interpreted as a hyperplane in flux space. The
intersection of all these hyperplanes forms the null space. From thermodynamic

Elementary  Flux Modes

S0 S1 S2 S3

v1 v2 v3

v4

S4

v1 v2 v3

S0 S1 S2 S3

S4

1 2 3

v4

Figure 2.6 Schematic representation of elementary flux
modes for the reaction network depicted in Eq. (2.67).
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considerations, some of the reactions can be assumed to proceed only in one
direction so that the backward reaction can be neglected. Provided that all reactions
are unidirectional or irreversible, the intersection of the null space with the
semipositive orthant of the flux space forms a polyhedral cone, the flux cone. The
intersection procedure results in a set of rays or edges starting at 0, which fully
describe the cone. The edges are represented by vectors and any admissible steady
state of the system is a positive combination of these vectors. An illustration is
presented in Figure 2.7.
The set of elementaryfluxmodes is uniquely defined. Pfeiffer et al. [23] developed a

software (�Metatool�) to calculate the elementary fluxmodes for metabolic networks.
The concept of extreme pathways [28–30] is analogous to the concept of elementary
flux modes, but here all reactions are constrained by flux directionality, while the
concept of elementary flux modes allows for reversible reactions. To achieve this,
reversible reactions are broken down into their forward and backward components.
This way, the set of extreme pathways is a subset of the set of elementary flux modes
and the extreme pathways are systemically independent.
Elementary fluxmodes and extreme pathways can be used to understand the range

of metabolic pathways in a network, to test a set of enzymes for production of a
desired product and detect nonredundant pathways, to reconstructmetabolism from
annotated genome sequences and analyze the effect of enzyme deficiency, to reduce
drug effects, and to identify drug targets. A specific application, the flux balance
analysis, will be explained in Section 8.1.

Figure 2.7 Flux cone: schematic representation
of the subspace of feasible steady states within
the space spanned by all positive-valued vectors
for rates of irreversible reactions, vi, i¼ 1, . . ., r.
Only three dimensions are shown. Feasible
solutions are linear combinations of basis
vectors of matrix K (see text). (a) Illustrative
representation of the flux cone for a higher
dimensional system (with r–Rank (N)¼ 4)). The
basis vectors of K are rays starting at the origin.
The line connecting the four rays indicates

possible limits for real flux distributions set by
constraints. The little star indicates one special
feasible solution for the fluxes. (b) The flux
cone for an unbranched reaction chain of
arbitrary length, such as the network N2 in
Table 2.4, is just a ray since K is represented by
a single basis vector containing only 1s. (c) The
flux cone for network N3 in Table 2.4 is the
plane spanned by the basis vectors
k1 ¼ ð 1 1 0 ÞT; k2 ¼ ð 1 0 1 ÞT.
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2.2.4
Conservation Relations: Null Space of NT

If a substance is neither added to nor removed from the reaction system (neither
produced nor degraded), its total concentration remains constant. This also holds if
the substance interacts with other compounds by forming complexes. We have seen
already as an example the constancy of the total enzyme concentration (Eq. (2.19))
when deriving the Michaelis–Menten rate equation. This was based on the assump-
tion that enzyme production and degradation takes place on a much faster timescale
than the catalyzed reaction.
For the mathematical derivation of the conservation relations [21], we consider a

matrix G fulfilling

GN ¼ 0: ð2:69Þ

Due to Eq. (2.58), it follows

G _S ¼ GNv ¼ 0: ð2:70Þ

Integrating this equation leads directly to the conservation relations

GS ¼ constant: ð2:71Þ

Thenumber of independent rows ofG is equal ton–RankN, wheren is thenumber
of metabolites in the system. GT is the kernel matrix of NT, hence it has similar
properties as K. Matrix G can also be found using the Gauss algorithm. It is not
unique, but every linear combination of its rows is again a valid solution. There is a
simplest representation G ¼ ðG0 In�Rank N Þ. Finding this representation may be
helpful for a simple statement of conservation relations, but this may necessitate
renumbering and reordering of metabolite concentrations (see below).

Example 2.5

Consider a set of two reactions comprising a kinase and a phosphatase reaction

ATP ADP
v1

v2

ð2:72Þ

The metabolite concentration vector reads S ¼ ðATP ADP ÞT, the stoichiometric

matrix is N ¼ �1 1
1 �1

� �
yielding G ¼ ð 1 1 Þ. From the condition GS¼ con-

stant, it follows ATP þ ADP¼ constant. Thus, we have a conservation of adenine
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nucleotides in this system. The actual values of ATP þ ADP must be determined
from the initial conditions.

Example 2.6

For the followingmodel of the upper part of glycolysis

ð2:73Þ
v1 v2 v3

Fruc-6PGluc-6PGlucose Fruc-1,6P2

ATP  ADPATP  ADP
(S1) (S2) (S3 (S4))

(S5) (S6) (S5) (S6)

the stoichiometric matrixN (note the transpose!) and a possible representation of
the conservation matrix G are given by

NT¼
�1 1 0 0 �1 1
0 �1 1 0 0 0
0 0 �1 1 �1 1

0
@

1
A and G¼

2 1 1 0 0 1
0 0 0 0 1 1
1 1 1 1 0 0

0
@

1
A¼ g1

g2
g3

0
@

1
A:

ð2:74Þ
The interpretation of the second and third row is straightforward, showing the
conservation of adenine nucleotides (g2, ADP þ ATP¼ constant) and the conser-
vationofsugars(g3), respectively.Theinterpretationof thefirst rowis less intuitive. If
we construct the linear combination g4¼�g1þ3 �g2þ2 �g3¼ð0 1 1 2 3 2Þ, we
find the conservation of phosphate groups.

Importantly, conservation relations can be used to simplify the system of differ-
ential equations _S ¼ Nv describing the dynamics of our reaction system. The idea is
to eliminate linear dependent differential equations and to replace them by appro-
priate algebraic equations. Below the procedure is explained systematically [20].
First we have to rearrange the rows in the stoichiometric matrixN as well as in the

concentration vector S such that a set of independent rows is on top and the
dependent rows are at the bottom. Then the matrix N is split into the independent
part NR and the dependent part N 0 and a link matrix L is introduced in the following
way:

N ¼ NR

N 0

� �
¼ LNR ¼ IRank N

L0

� �
NR: ð2:75Þ

IRank N is the identity matrix of size RankN. The differential equation systemmay be
rewritten accordingly

_S ¼
_Sindep
_Sdep

� �
¼ IRank N

L0

� �
NRv; ð2:76Þ
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and the dependent concentrations fulfil

_Sdep ¼ L0 � _Sindep: ð2:77Þ

Integration leads to

Sdep ¼ L0 � Sindepþ constant: ð2:78Þ

This relation is fulfilled during the entire time course. Thus, we may replace the
original system by a reduced differential equation system

_Sindep ¼ NRv; ð2:79Þ

supplemented with the set of algebraic equations (2.78).

Example 2.7

For the reaction system,

ð2:80ÞS1 S2

v1 v2 v3

S3 S4
v4

the stoichiometric matrix, the reduced stoichiometric matrix, and the link matrix
read

N ¼
1�1 0 0
0 1�1 0
0�1 0 1
0 1 0�1

0
BB@

1
CCA; NR ¼

1�1 0 0
0 1 �1 0
0 �1 0 1

0
@

1
A;

L ¼
1 0 0
0 1 0
0 0 1
0 0�1

0
BB@

1
CCA; L0 ¼ ð 0 0 �1 Þ

The conservation relation S3 þ S4¼ constant is expressed byG ¼ ð 0 0 1 1 Þ.
The ODE system

_S1 ¼ v1�v2
_S2 ¼ v2�v3
_S3 ¼ v4�v2
_S4 ¼ v2�v4
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can be replaced by the differential-algebraic system

_S1 ¼ v1�v2
_S2 ¼ v2�v3
_S3 ¼ v4�v2
S3þ S4 ¼ constant

;

which has one differential equation less.

Eukaryotic cells contain a variety of organelles like nucleus, mitochondria, or
vacuoles, which are separated by membranes. Reaction pathways may cross the
compartment boundaries. If a substance S occurs in two different compartments,
e.g., in the cytosol and inmitochondria, the respective concentrations canbe assigned
to two different variables, SC1 and SC2. Formally, the transport across the membrane
can be considered as a reaction with rate v. It is important to note that both
compartments have different volumes VC1 and VC2. Thus, transport of a certain
amount of S with rate v from compartmentC1 into the compartmentC2 changes the
concentrations differently:

VC1 � d
dt
SC1 ¼ �v and VC2 � d

dt
SC2 ¼ v; ð2:81Þ

where V � S denotes substance amount in moles. Compartmental models are dis-
cussed in more detail in Section 3.4.

2.3
Kinetic Models of Biochemical Systems

Summary

An important problem in the modeling of biological systems is to characterize the
dependence of certain properties on time and space. One frequently applied strategy
is the description of the change of state variables by differential equations. If only
temporal changes are considered, ODEs are used. For changes in time and space,
partial differential equations (PDEs) are appropriate. In this chapter, we will deal with
the solution, analysis, a numerical integration of ODEs, and with basic concepts of
dynamical systems theory as state space, trajectory, steady states, and stability.

2.3.1
Describing Dynamics with ODEs

The time behavior of biological systems in a deterministic approach can be described
by a set of differential equations

dxi
dt
¼ _xi ¼ fiðx1; . . . ; xn; p1; . . . ; pl; tÞ i ¼ 1; . . . ; n; ð2:82Þ
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where xi are the variables, e.g., concentrations, and pj are the parameters, e.g.,
enzyme concentrations or kinetic constants, and t is the time.Wewill use the notions
dx/dt and _x interchangeably. In vector notation, Eq. (2.82) reads

d
dt
x ¼ _x ¼ f ðx; p; tÞ; ð2:83Þ

with x¼ (x1,. . ., xn)
T, f¼ (f1,. . ., fn)

T, and p¼ (p1,. . ., pl)
T. For biochemical reaction

systems, the functions fi are frequently given by the contribution of producing and
degrading reactions as described for the balance equations in Section 1.2.

2.3.1.1 Notations
ODEs depend on one variable (e.g., time t). Otherwise, they are called PDEs. PDEs are
not considered here.
An implicit ODE

Fðt; x; x0; . . . ; xðnÞÞ ¼ 0 ð2:84Þ
includes the variable t, the unknown function x, and its derivatives up to nth order. An
explicit ODE of nth order has the form

xðnÞ ¼ f ðt; x; x0; . . . ; xðn�1ÞÞ: ð2:85Þ
The highest derivative (here n) determines the order of the ODE.
Studying the time behavior of our system, we may be interested in finding

solutions of the ODE, i.e., finding an n times differentiable function x fulfilling
Eq. (2.85). Such a solution may depend on parameters, so-called integration con-
stants, and represents a set of curves. A solution of anODEof nth order depending on
n integration parameters is a general solution. Specifying the integration constants,
for example, by specifying n initial conditions (for n¼ 1: x(t¼ 0)¼ x0) leads to a
special or particular solution.
We will not show here all possibilities of solving ODEs, instead we will focus on

some cases relevant for the following chapters.
If the right-hand sides of the ODEs are not explicitly dependent on time

t ( _x ¼ f ðx; pÞ), the system is called autonomous. Otherwise it is nonautonomous.
This case will not be considered here.
The system state is a snapshot of the system at a given time that contains

enough information to predict the behavior of the system for all future times. The
state of the system is described by the set of variables. The set of all possible states
is the state space. The number n of independent variables is equal to the
dimension of the state space. For n¼ 2, the two-dimensional state space can be
called phase plane.
A particular solution of the ODE system _x ¼ f ðx; p; tÞ, determined from the

general solution by specifying parameter values p and initial conditions
xðt0Þ ¼ x0, describes a path through the state space and is called trajectory.
Stationary states or steady states are points �x in the phase plane, where the

condition _x ¼ 0ð _x1 ¼ 0; . . . ; _xn ¼ 0Þ is met. At steady state, the system of n differ-
ential equations is represented by a system of n algebraic equations for n variables.
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The equation system _x ¼ 0 can have multiple solutions referring to multiple steady
states. The change of number or stability of steady states upon changes of parameter
values p is called a bifurcation.
Linear systems of ODEs have linear functions of the variables as right-hand sides,

such as

dx1
dt
¼ a11x1þ a12x2þ z1

dx2
dt
¼ a21x1þ a22x2þ z2

; ð2:86Þ

or in general _x ¼ Axþ z. The matrix A¼ {aik} is the system matrix containing the
system coefficients aik¼ aik(p) and the vector z¼ (z1, . . ., Zn)

T contains inhomoge-
neities. The linear system is homogeneous if z¼ 0 holds. Linear systems can be solved
analytically. Although in real-world problems, the functions are usually nonlinear,
linear systems are important as linear approximations in the investigation of steady
states.

Example 2.8

The simple linear system

dx1
dt
¼ a12x2;

dx2
dt
¼ �x1 ð2:87Þ

has the general solution

x1 ¼ 1
2
e�i

ffiffiffiffiffi
a12
p

tð1þ e2i
ffiffiffiffiffi
a12
p

tÞC1� 1
2
ie�i

ffiffiffiffiffi
a12
p

tð�1þ e2i
ffiffiffiffiffi
a12
p

tÞ ffiffiffiffiffiffia12
p

C2

x2 ¼ i
2
ffiffiffiffiffiffi
a12
p e�i

ffiffiffiffiffi
a12
p

tð1þ e2i
ffiffiffiffiffi
a12
p

tÞC1þ 1
2
e�i

ffiffiffiffiffi
a12
p

tð1þ e2i
ffiffiffiffiffi
a12
p

tÞC2

with the integration constantsC1 andC2. Choosing a12¼ 1 simplifies the system to
x1¼C1 cost þ C2 sint and x2¼C2 cost�C1sint. Specification of the initial con-
ditions to x1(0)¼ 2, x2 (0)¼ 1 gives the particular solution x1¼ 2 cost þ sint and
x2¼ cost� 2sint. The solution can be presented in the phase plane or directly as
functions of time (Figure 2.8).

2.3.1.2 Linearization of Autonomous Systems
In order to investigate the behavior of a system close to steady state, itmay be useful to
linearize it. Considering the deviation x̂ðtÞ from steady state with xðtÞ ¼ �xþ x̂ðtÞ, it
follows

_x ¼ f ð�xþ x̂ðtÞÞ ¼ d
dt
ð�xþ x̂ðtÞÞ ¼ d

dt
x̂ðtÞ: ð2:88Þ
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Taylor expansion of the temporal change of the deviation, ðd=dtÞx̂i ¼
fið�x1þ x̂1; . . . ; �xnþ x̂nÞ, gives

d
dt
x̂i ¼ fið�x1; . . . ; �xnÞþ

Xn
j¼1

qfi
qxj

x̂j þ 1
2

Xn
j¼1

Xn
k¼1

q2fi
qxjqxk

x̂jx̂kþ � � � : ð2:89Þ

Since we consider steady state, it holds fið�x1; . . . ; �xnÞ ¼ 0. Neglecting terms of
higher order, we have

d
dt
x̂i ¼

Xn
j¼1

qfi
qxj

x̂j ¼
Xn
j¼1

aijx̂j: ð2:90Þ

The coefficients aij¼ qfi/qxj are calculated at steady state and are constant. They
form the so-called Jacobian matrix:

J ¼ aij
� � ¼

qf1
qx1

qf1
qx2

. . .
qf1
qxn

qf2
qx1

qf2
qx2

. . .
qf2
qxn

..

. ..
. . .

. ..
.

qfn
qx1

qfn
qx2

. . .
qfn
qxn

0
BBBBBBBB@

1
CCCCCCCCA
: ð2:91Þ

For linear systems, it holds J¼A.

2.3.1.3 Solution of Linear ODE Systems
We are interested in two different types of problems: describing the temporal
evolution of the system and finding its steady state. The problem of finding the
steady state �x of a linear ODE system, _x ¼ 0, implies solution of A�xþ z ¼ 0. The
problem can be solved by inversion of the system matrix A:

�x ¼ �A�1z: ð2:92Þ

Phase planeTime course(a) (b)
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1

Time, a.u. x1

Figure 2.8 Phase plane and time course for the linear system of
ODEs represented in Eq. (2.87). In time course panel: gray line
x1(t), black line x2(t). Parameters: a12¼ 1, x1(0)¼ 1, x2(0)¼ 2.
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The time course solution of homogeneous linear ODEs is described in the following.
The systems can be solved with an exponential function as ansatz. In the simplest
case n¼ 1, we have

dx1
dt
¼ a11x1: ð2:93Þ

Introducing the ansatz x1(t)¼ b1e
lt with constant b1 into Eq. (2.93) yields b1lelt¼

a11b1e
lt, which is true, if l¼ a11. This leads to the general solution x1(t)¼ b1e

a11t. To
find a particular solution, we must specify the initial conditions x1ðt ¼ 0Þ ¼
xð0Þ1 ¼ b1ea11tjt¼0 ¼ b1. Thus, the solution is

x1ðtÞ ¼ xð0Þ1 ea11t: ð2:94Þ
For a linear homogeneous systemof n differential equations, _x ¼ Ax, the approach is
x¼ belt. This gives _x ¼ blelt ¼ Abelt. The scalar factor elt can be cancelled out,
leading to bl¼Ab or the characteristic equation

ðA�lInÞb ¼ 0: ð2:95Þ
For homogeneous linear ODE systems, the superposition principle holds: if x1 and x2
are solutions of this ODE system, then also their linear combination is a solution.
This leads to the general solution of the homogeneous linear ODE system:

xðtÞ ¼
Xn
i¼1

cib
ðiÞeli t; ð2:96Þ

where b(i) is the eigenvectors of the systemmatrixA corresponding to the eigenvalues
li. A particular solution specifying the coefficients ci can be found considering the
initial conditions xðt ¼ 0Þ ¼ xð0Þ ¼Pn

j¼1 cib
ðiÞ. This constitutes an inhomogeneous

linear equation system to be solved for ci.
For the solution of inhomogeneous linear ODEs, the system _x ¼ Axþ z can be

transformed into a homogeneous system by the coordination transformation
x̂ ¼ x��x. Since ðd=dtÞ�x ¼ A�xþ z ¼ 0, it holds ðd=dtÞx̂ ¼ Ax̂. Therefore, we can
use the solution algorithm for homogeneous systems for the transformed system.

2.3.1.4 Stability of Steady States
If a system is at steady state, it should stay there – until an external perturbation
occurs. Depending on the system behavior after perturbation, steady states are either

. stable – the system returns to this state

. unstable – the system leaves this state

. metastable – the system behavior is indifferent

A steady state is asymptotically stable, if it is stable and solutions based on nearby
initial conditions tend to this state for t ! ¥. Local stability describes the behavior
after small perturbations, global stability after any perturbation.
To investigate, whether a steady state �x of the ODE system _x ¼ f ðxÞ is asymptoti-

cally stable, we consider the linearized system dx̂=dt ¼ Ax̂ with x̂ðtÞ ¼ xðtÞ��x. The
steady state �x is asymptotically stable, if the JacobianA has n eigenvalues with strictly
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negative real parts each. The steady state is unstable, if at least one eigenvalue has a
positive real part. This will now be explained in more detail for 1- and 2D systems.
We start with 1D systems, i.e., n¼ 1, and assume without loss of generality �x1 ¼ 0.

The system _x1 ¼ f1ðx1Þ yields the linearized system _x1 ¼ ðqf1=qx1Þj�x1x1 ¼ a11x1. The
Jacobian matrix A¼ {a11} has only one eigenvalue l1¼ a11. The solution is
x1ðtÞ ¼ xð0Þ1 el1t. It is obvious that el1t increases for l1> 0 and the system runs away
from the steady state. For l1< 0, the deviation from steady state decreases and
x1ðtÞ! �x1 for t ! ¥. For l1¼ 0, consideration of the linearized system allows no
conclusion about stability of the original system because higher order terms in
Eq. (2.89) play a role.
Consider the 2D case, n¼ 2. For the general (linear or nonlinear) system

_x1 ¼ f1ðx1; x2Þ
_x2 ¼ f2ðx1; x2Þ

; ð2:97Þ

we can compute the linearized system

_x1 ¼ qf1
qx1

����
�x

x1þ qf1
qx2

����
�x

x2

_x2 ¼ qf2
qx1

����
�x

x1þ qf2
qx2

����
�x

x2

or _x ¼
qf1
qx1

����
�x

qf1
qx2

����
�x

qf2
qx1

����
�x

qf2
qx2

����
�x

0
BBB@

1
CCCAx ¼ a11 a12

a21 a22

� �
x ¼ Ax:

ð2:98Þ

To find the eigenvalues of A, we have to solve the characteristic polynomial

l2�ða11þ a22Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Tr A

lþ a11a22�a12a21|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Det A

¼ 0; ð2:99Þ

with Tr A the trace and Det A the determinant of A, and get

l1=2 ¼ TrA
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTr AÞ2

4
�Det A

s
: ð2:100Þ

The eigenvalues are either real for (Tr A)2/4�Det A
 0 or complex (otherwise).
For complex eigenvalues, the solution contains oscillatory parts.
For stability, it is necessary that Tr A< 0 and Det A
 0. Depending on the sign

of the eigenvalues, steady states of a 2D system may have the following
characteristics:

1. l1< 0, l2< 0, both real: stable node
2. l1> 0, l2> 0, both real: unstable node
3. l1> 0, l2< 0, both real: saddle point, unstable
4. Re(l1)< 0, Re(l2)< 0, both complex with negative real parts: stable focus
5. Re(l1)> 0, Re(l2)> 0, both complex with positive real parts: unstable focus
6. Re(l1)¼Re(l2)¼ 0, both complex with zero real parts: center, unstable.
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Graphical representation of stability depending on trace and determinant is given
in Figure 2.9.
Up to now, we considered only the linearized system. For the stability of the

original system, the following holds. If the steady state of the linearized system is
asymptotically stable, then the steady state of the complete system is also asymptoti-
cally stable. If the steady state of the linearized system is a saddle point, an unstable
node or an unstable focus, then the steady state of the complete system is also
unstable. This means that statements about the stability remain true, but the
character of the steady state is not necessarily kept. For the center, no statement
on the stability of the complete system is possible.

Routh–Hurwitz Theorem [31] For systems with n> 2 differential equations, we
obtain the characteristic polynomial

cnl
nþ cn�1l

n�1þ � � � þ c1lþ c0 ¼ 0: ð2:101Þ
This is a polynomial of degree n, which frequently cannot be solved analytically (at

least for n> 4). We can use the Hurwitz criterion to test whether the real parts of all
eigenvalues are negative. We have to form the Hurwitz matrix H, containing the
coefficients of the characteristic polynomial:

Tr A

4Det A= (Tr A)2

λ1 > 0, λ2 > 0, real: 

λ1 > 0, λ2 < 0, real: 

unstable node

unstable saddle
Re(λ1) > 0, Re( λ 2) > 0, complex: 
unstable focus

Det A

λ1 > 0, λ2 < 0, real: Re( complex:

Re(λ1)=Re(λ2)= 0,
complex: center

unstable saddle
Re(λ1) < 0, λ2) < 0,
stable focus

λ1 < 0,λ2 < 0, real: 
stable node

Figure 2.9 Stability of steady states in two-dimensional systems:
the character of steady-state solutions is represented depending
on the value of the determinant (x-axis) and the trace (y-axis) of the
Jacobian matrix. Phase plane behavior of trajectories in the
different cases is schematically represented.
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H¼

cn�1 cn�3 cn�5 ... 0
cn cn�2 cn�4 ... 0
0 cn�1 cn�3 ... 0
0 cn cn�2 ... 0

..

. ..
. ..

. . .
. ..

.

0 0 0 ... c0

0
BBBBBBBB@

1
CCCCCCCCA
¼fhikg with hik¼

cnþi�2k; if 0�2k�i�n

0; else
:

�

ð2:102Þ
It has been shown that all solutions of the characteristic polynomial have negative

real parts, if all coefficients ci of the polynomial as well as all principal leadingminors
of H have positive values.

2.3.1.5 Global Stability of Steady States
A state is globally stable, if the trajectories for all initial conditions approach it for
t ! ¥. The stability of a steady state of an ODE system can be tested with a method
proposed by Lyapunov:

Shift the steady state into the point of origin by coordination transformation
x̂ ¼ x��x.
Find a function VL(x1, . . ., xn), called Lyapunov function, with the following
properties:

(1) VL(x1, . . ., xn) has continuous derivatives with respect to all variables xi.
(2) VL(x1, . . ., xn) satisfiesVL(x1, . . ., xn)¼ 0 for xi¼ 0 and is positive definite

elsewhere, i.e., VL(x1, . . ., xn)> 0 for xi 6¼ 0.
(3) The time derivative of VL(x(t)) is given by

dVL

dt
¼
Xn
i¼1

qVL

qxi

dxi
dt
¼
Xn
i¼1

qVL

qxi
fiðx1; . . . ; xnÞ: ð2:103Þ

A steady state �x ¼ 0 is stable, if the time derivative of VL (x(t)) in a certain region
around this state has no positive values. The steady state is asymptotically stable, if the
time derivative ofVL (x(t)) in this region is negative definite, i.e., dVL/dt¼ 0 for xi¼ 0
and dVL/dt< 0 for xi 6¼ 0.

Example 2.9

The system _x1 ¼ �x1; _x2 ¼ �x2 has the solution x1ðtÞ ¼ xð0Þ1 e�t; x2ðtÞ ¼ xð0Þ2 e�t and
the state x1¼ x2¼ 0 is asymptotically stable.
Theglobalstabilitycanalsobeshownusingthepositivedefinite functionVL ¼ x21 þ x22

as Lyapunov function. It holds dVL=dt ¼ ðqVL=qx1Þ _x1þðqVL=qx2Þ _x2 ¼ 2x1ð�x1Þ
þ 2x2ð�x2Þ, which is negative definite.

2.3.1.6 Limit Cycles
Oscillatory behavior is a typical phenomenon in biology. The cause of the oscillation
may be different either imposed by external influences or encoded by internal
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structures and parameters. Internally caused stable oscillations can be found if we
have a limit cycle in the phase space.
A limit cycle is an isolated closed trajectory. All trajectories in its vicinity are periodic

solutions winding toward (stable limit cycle) or away from (unstable) the limit cycle
for t ! ¥.

Example 2.10

The nonlinear system _x1 ¼ x21 x2�x1; _x2 ¼ p�x21x2 has a steady state at
�x1 ¼ p; �x2 ¼ 1=p. If we choose, e.g., p¼ 0.98, this steady state is unstable since
Tr A¼ 1� p2> 0 (Figure 2.10).

For 2D systems, there are two criteria to check whether a limit cycle exists.
Consider the system of differential equations

_x1 ¼ f1ðx1; x2Þ
_x2 ¼ f2ðx1; x2Þ : ð2:104Þ

The negative criterion of Bendixson states: if the expression TrA¼ qf1/qx1 þ qf2/qx2
does not change its sign in a certain region of the phase plane, then there is no closed
trajectory in this area.Hence, a necessary condition for the existence of a limit cycle is
the change of the sign of Tr A.

Example 2.11

Example 2.10 holds TrA ¼ ð2x1x2�1Þþ ð�x21 Þ. Therefore, Tr A ¼ 0 is fulfilled at
x2 ¼ ðx21 þ 1Þ=ð2x1Þ and TrAmay assumepositive or negative values for varying x1, x2,
and the necessary condition for the existence of a limit cycle is met.

2 2.x
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Figure 2.10 Solution of the Equation system in Example 2.10
represented as time course (left panel) and in phase plane (right
panel). Initial conditions x1(0)¼ 2, x2(0)¼ 1.
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The criterion of Poincar�e–Bendixson states: if a trajectory in the 2D phase plane
remains within a finite region without approaching a singular point (a steady
state), then this trajectory is either a limit cycle or it approaches a limit cycle. This
criterion provides a sufficient condition for the existence of a limit cycle.
Nevertheless, the limit cycle trajectory can be computed analytically only in very
rare cases.

2.3.2
Metabolic Control Analysis

Metabolic control analysis (MCA) is a powerful quantitative and qualitative frame-
work for studying the relationship between steady-state properties of a network of
biochemical reaction and the properties of the individual reactions. It investigates the
sensitivity of steady-state properties of the network to small parameter changes.MCA
is a useful tool for theoretical and experimental analysis of control and regulation in
cellular systems.
MCAwas independently founded by two different groups in the 1970s [32, 33] and

was further developed by many different groups upon the application to different
metabolic systems. A milestone in its formalization was provided by Reder [20].
Originally intended for metabolic networks, MCA has nowadays found applications
also for signaling pathways, gene expression models, and hierarchical networks
[34–38].
Metabolic networks are very complex systems that are highly regulated and exhibit

a lot of interactions such as feedback inhibition or common substrates such as ATP
for different reactions. Many mechanisms and regulatory properties of isolated
enzymatic reactions are known. The development of MCAwas motivated by a series
of questions like the following: Can one predict properties or behavior of metabolic
networks from the knowledge about their parts, the isolated reactions? Which
individual steps control a flux or a steady-state concentration? Is there a rate-limiting
step? Which effectors or modifications have the most prominent effect on the
reaction rate? In biotechnological production processes, it is of interest which
enzyme(s) should be activated in order to increase the rate of synthesis of a desired
metabolite. There are also related problems in health care. Concerning metabolic
disorders involving overproduction of a metabolite, which reactions should be
modified in order to down-regulate this metabolite while perturbing the rest of the
metabolism as weakly as possible?
Inmetabolic networks, the steady-state variables, i.e., the fluxes and themetabolite

concentrations, depend on the value of parameters such as enzyme concentrations,
kinetic constants (like Michaelis constants andmaximal activities), and other model-
specific parameters. The relations between steady-state variables and kinetic para-
meters are usually nonlinear. Up to now, there is no general theory that predicts the
effect of large parameter changes in a network. The approach presented here is,
basically, restricted to small parameter changes. Mathematically, the system is
linearized at steady state, which yields exact results, if the parameter changes are
infinitesimally small.

2.3 Kinetic Models of Biochemical Systems j51



In this section, wewill first define a set ofmathematical expressions that are useful
to quantify control in biochemical reaction networks. Later we will show the relations
between these functions and their application for prediction of reaction network
behavior.

2.3.2.1 The Coefficients of Control Analysis
Biochemical reaction systems are networks of metabolites connected by chemical
reactions. Their behavior is determined by the properties of their components – the
individual reactions and their kinetics – as well as by the network structure – the
involvement of compounds in different reaction or in brief: the stoichiometry. Hence,
theeffectofaperturbationexertedonareactioninthisnetworkwilldependonboth– the
localpropertiesofthisreactionandtheembeddingofthisreactionintheglobalnetwork.
Let y(x) denotes a quantity that depends on another quantity x. The effect of the

change Dx on y is expressed in terms of sensitivity coefficients:

cyx ¼
x
y
Dy
Dx

� �
Dx! 0

: ð2:105Þ

In practical applications, Dxmight be, e.g., identified with 1% change of x and Dy
with the percentage change of y. The factor x/y is a normalization factor that makes
the coefficient independent of units and of the magnitude of x and y. In the limiting
case Dx ! 0, the coefficient defined in Eq. (2.105) can be written as

cyx ¼
x
y
qy
qx
¼ q ln y

q ln x
: ð2:106Þ

Both right-hand expressions are mathematically equivalent.
Two distinct types of coefficients, local and global coefficients, reflect the relations

among local and global effects of changes. Elasticity coefficients are local coefficients
pertaining to individual reactions. They can be calculated in any given state. Control
coefficients and response coefficients are global quantities. They refer to a given steady
state of the entire system. After a perturbation of x, the relaxation of y to new steady
state is considered.
The general form of the coefficients in control analysis as defined in Eq. (2.106)

contains the normalization x/y. The normalization has the advantage that we get rid
of units and can compare, e.g., fluxes belonging to different branches of a network.
The drawback of the normalization is that x/y is not defined as soon as y¼ 0, which
may happen for certain parameter combinations. In those cases, it is favorable to
work with nonnormalized coefficients. Throughout this chapter, we will consider
usually normalized quantities. If we use nonnormalized coefficients, they areflagged
as ~c. In general, the use of one or the other type of coefficient is also a matter of
personal choice of the modeler.
Changes reflected by the different coefficients are illustrated in Figure 2.11.

2.3.2.2 The Elasticity Coefficients
An elasticity coefficient quantifies the sensitivity of a reaction rate to the change of a
concentration or a parameter while all other arguments of the kinetic law are kept
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fixed. It measures the direct effect on the reaction velocity, while the rest of the
network is not taken into consideration. The sensitivity of the rate vk of a reaction to
the change of the concentration Si of a metabolite is calculated by the e-elasticity:

eki ¼
Si
vk

qvk
qSi

: ð2:107Þ

The p-elasticity is defined with respect to parameters pm such as kinetic constants,
concentrations of enzymes, or concentrations of external metabolites as follows:

pkm ¼
pm
vk

qvk
qpm

: ð2:108Þ

Example 2.12

In Michaelis–Menten kinetics, the rate v of a reaction depends on the substrate
concentration S in the form v¼VmaxS/(Km þ S) (Eq. (2.22)). The sensitivity is given
by the elasticity evS ¼ qlnv=qlnS. Since the Michaelis–Menten equation defines a
mathematical dependency of v on S, it is easy to calculate that

S S
v1 v2 v3

v1 v2(Km, Vmax) v3

Substrate
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elasticity

S1 S2 S1 S2
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1

1

v
Sε
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π
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Figure 2.11 Schematic representation of perturbation and effects
quantified by different coefficients of metabolic control analysis.
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evS ¼
S
v
q
qS

VmaxS
Kmþ S

� �
¼ S

v
VmaxðKmþ SÞ�VmaxS

ðKmþ SÞ2 ¼ S
Kmþ S

: ð2:109Þ

The normalized e-elasticity in the case of mass action kinetics can be calculated
similarly and is always 1. Whenever the rate does not depend directly on a
concentration (e.g., for a metabolite of a reaction system that is not involved in the
considered reaction), the elasticity is zero.

Example 2.13

Typical values of elasticity coefficients will be explained for an isolated reaction
transforming substrate S into product P. The reaction is catalyzed by enzyme E with
the inhibitor I, and the activator A as depicted below

ð2:110Þ
PS

E

AI

Usually, the elasticity coefficients formetabolite concentrations are in the following
range:

evS ¼
S
v
qv
qS

> 0 and evP ¼
P
v
qv
qP
� 0: ð2:111Þ

Inmost cases, the rate increases with the concentration of the substrate (compare,
e.g., Eq. (2.109)) and decreases with the concentration of the product. An exception
from evS > 0 occurs in the case of substrate inhibition (Eq. (2.33)), where the elasticity
will become negative for S> Sopt. The relation evP ¼ 0 holds, if the reaction is
irreversible or if the product concentration is kept zero by external mechanisms.
The elasticity coefficients with respect to effectors I or A should obey

evA ¼
A
v
qv
qA

> 0 and evI ¼
I
v
qv
qI

< 0; ð2:112Þ

since this is essentially what the notions activator and inhibitor mean.
For the most kinetic laws, the reaction rate v is proportional to the enzyme

concentration E. For example, E is amultiplicative factor in themass action rate law
as well as in the maximal rate of the Michaelis–Menten rate law. Therefore, it holds
that

evE ¼
qlnv
qlnE

¼ 1: ð2:113Þ

More complicated interactions between enzymes and substrates such as meta-
bolic channeling (direct transfer of the metabolite from one enzyme to the next
without release to the medium) may lead to exceptions from this rule.
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2.3.2.3 Control Coefficients
When defining control coefficients, we refer to a stable steady state of the metabolic
system characterized by steady-state concentrations Sst¼Sst(p) and steady-state
fluxes J¼ v(Sst(p), p). Any sufficiently small perturbation of an individual reaction
rate, vk ! vk þ Dvk, by a parameter change pk ! pk þ Dpkdrives the system to a new
steady state in close proximity with J ! J þ DJ and Sst ! Sst þ DS. A measure for
the change of fluxes and concentrations are the control coefficients.
The flux control coefficient for the control of rate vk over flux Jj is defined as

Cj
k ¼

vk
Jj

qJj=qpk
qvk=qpk

: ð2:114Þ

The control coefficients quantify the control that a certain reaction vk exerts on the
steady-stateflux Jj. It should benoted that the rate change,Dvk, is caused by the change
of a parameter pk that has a direct effect solely on vk. Thus, it holds

qvk
qpk
6¼ 0 and

qvl
qpk
¼ 0 ðl 6¼ kÞ: ð2:115Þ

Such a parameter might be the enzyme concentration, a kinetic constant, or the
concentration of a specific inhibitor or effector.
In a more compact form the flux control coefficients read

Cj
k ¼

vk
Jj

qJj
qvk

: ð2:116Þ

Equivalently, the concentration control coefficient of concentrations Ssti with respect
to vk reads

Ci
k ¼

vk
Ssti

qSsti
qvk

: ð2:117Þ

2.3.2.4 Response Coefficients
The steady state is determined by the values of the parameters. A third type of
coefficients expresses the direct dependence of steady-state variables on parameters.
The response coefficients are defined as

Rj
m ¼

pm
Jj

qJj
qpm

and Ri
m ¼

pm
Ssti

qSsti
qpm

; ð2:118Þ

where the first coefficient expresses the response of the flux to a parameter
perturbation, while the latter describes the response of a steady-state concentration.

2.3.2.5 Matrix Representation of the Coefficients
Control, response, and elasticity coefficients are defined with respect to all rates,
steady-state concentrations, fluxes, or parameters in the metabolic system and in the
respective model. They can be arranged in matrices:

CJ ¼ fCj
kg; CS ¼ fCi

kg; RJ ¼ fRj
mg; RS ¼ fRi

mg; « ¼ feki g; p ¼ fpkmg:
ð2:119Þ
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Matrix representation can also be chosen for all types of nonnormalized coeffi-
cients. The arrangement in matrices allows us to apply matrix algebra in control
analysis. In particular, the matrices of normalized control coefficients can be
calculated from the matrices of nonnormalized control coefficient as follows:

CJ ¼ ðdgJÞ�1 � ~CJ � dgJ CS ¼ ðdgSstÞ�1 � ~CJ � dgJ
RJ ¼ ðdgJÞ�1 � ~RJ � dgp RS ¼ ðdgSstÞ�1 � ~RS � dgp
« ¼ ðdgvÞ�1 � ~« � dgSst p ¼ ðdgvÞ�1 � ~p � dgp

: ð2:120Þ

The symbol �dg� stands for the diagonal matrix, e.g., for a system with three
reaction holds

dgJ ¼
J1 0 0
0 J2 0
0 0 J3

0
@

1
A:

2.3.2.6 The Theorems of Metabolic Control Theory
Let us assume that we are interested in calculating the control coefficients for a
system under investigation. Usually, the steady-state fluxes or concentrations cannot
be expressed explicitly as function of the reaction rates. Therefore, flux and concen-
tration control coefficients cannot simply be determined by taking the respective
derivatives, as we did for the elasticity coefficients in Example 2.12.
Fortunately, the work with control coefficients is eased by of a set of theorems. The

first type of theorems, the summation theorems, makes a statement about the total
control over a flux or a steady-state concentration. The second type of theorems, the
connectivity theorems, relates the control coefficients to the elasticity coefficients. Both
types of theorems together with network information encoded in the stoichiometric
matrix contain enough information to calculate all control coefficients.
Here, we will first introduce the theorems. Then, we will present a hypothetical

perturbation experiment (as introduced by Kacser and Burns) to illustrate the
summation theorem. Finally, the theorems will be derived mathematically.

2.3.2.7 The Summation Theorems
The summation theorems make a statement about the total control over a certain
steady-state flux or concentration. The flux control coefficients and concentration
control coefficients fulfill, respectively,

Xr
k¼1

C
Jj
vk ¼ 1 and

Xr
k¼1

CSi
vk
¼ 0; ð2:121Þ

for any flux Jj and any steady-state concentration Ssti . The quantity r is the number of
reactions. Theflux control coefficients of ametabolic network for one steady-stateflux
sumup to one. Thismeans that all enzymatic reactions can share the control over this
flux. The control coefficients of a metabolic network for one steady-state concentra-
tion are balanced. This means again that the enzymatic reactions can share the
control over this concentration, but some of them exert a negative control while
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others exert a positive control. Both relations can also be expressed in matrix
formulation. We get

C J � 1 ¼ 1 and C S � 1 ¼ 0: ð2:122Þ
The symbols 1 and 0 denote column vectors with r rows containing as entries only

ones or zeros, respectively. The summation theorems for the nonnormalized control
coefficients read

~C
J �K ¼ K and ~C

S �K ¼ 0; ð2:123Þ
where K is the matrix satisfying N �K ¼ 0 (see Section 2.2). A more intuitive
derivation of the summation theorems is given in the following example according
to Kacser and Burns [33].

Example 2.14

The summation theorem for flux control coefficients can be derived using a thought
experiment.
Consider the following unbranched pathway with fixed concentrations of the

external metabolites, S0 and S3:

S0$V1 S1$V2 S2$V3 S3 ð2:124Þ
What happens to steady-state fluxes andmetabolite concentrations, if we perform

an experimental manipulation of all three reactions leading to the same fractional
change a of all three rates?

dv1
v1
¼ dv2

v2
¼ dv3

v3
¼ a: ð2:125Þ

The flux must increase to the same extent, dJ/J¼a, but, since rates of producing
and degrading reactions increase to the same amount, the concentrations of the
metabolites remain constant dS1/S1¼ dS2/S2¼ 0.
The combined effect of all changes in local rates on the system variables Sst1 ; S

st
2 ,

and J can be written as the sum of all individual effects caused by the local rate
changes. For the flux holds

dJ
J
¼ CJ

1
dv1
v1
þCJ

2
dv2
v2
þCJ

3
dv3
v3

: ð2:126Þ

It follows

a ¼ aðCJ
1þCJ

2þCJ
3Þ or 1 ¼ CJ

1þCJ
2þCJ

3: ð2:127Þ
This is just a special case of Eq. (2.121). In the same way, for the change of

concentration Sst1 , we obtain

dSst1
Sst1
¼ CS1

1
dv1
v1
þCS1

2
dv2
v2
þCS1

3
dv3
v3

: ð2:128Þ
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Finally, we get

0 ¼ CS1
1 þCS1

2 þCS1
3 as well as 0 ¼ CS2

1 þCS2
2 þCS2

3 : ð2:129Þ
Although shown here only for a special case, these properties hold in general for

systems without conservation relations. The general derivation is given in
Section 2.3.2.9.

2.3.2.8 The Connectivity Theorems
Flux control coefficients and elasticity coefficients are related by the expression

Xr
k¼1

C
Jj
vke

vk
Si
¼ 0: ð2:130Þ

Note that the sum runs over all rates vk for any flux Jj. Considering the concentra-
tion Si of a specificmetabolite and a certainflux Jj, each term contains the elasticity evkSi
describing the direct influence of a change of Si on the rates vk and the control
coefficient expressing the control of vk over Jj.
The connectivity theorembetween concentration control coefficients and elasticity

coefficients reads

Xr
k¼1

CSh
vk
evkSi ¼ �dhi: ð2:131Þ

Again, the sum runs over all rates vk, while Sh and Si are the concentrations of two

fixed metabolites. The symbol dhi ¼ 0; if h 6¼ i
1; if h ¼ i

�
is the so-called Kronecker

symbol.
In matrix formulation, the connectivity theorems read

C J � « ¼ 0 and CS � « ¼ �I; ð2:132Þ
where I denotes the identity matrix of size n� n. For nonnormalized coefficients, it
holds

~C
J � ~« � L ¼ 0 and ~C

S � ~« � L ¼ �L; ð2:133Þ

where L is the link matrix that expresses the relation between independent and
dependent rows in the stoichiometric matrix (Eq. (2.75)) A comprehensive represen-
tation of both summation and connectivity theorems for nonnormalized coefficients
is given by the following equation:

~C
J

~C
S

� �
� ðK ~«L Þ ¼ K 0

0 �L
� �

: ð2:134Þ

The summation and connectivity theorem together with the structural informa-
tion of the stoichiometric matrix are sufficient to calculate the control coefficients
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for a metabolic network. This shall be illustrated for a small network in the next
example.

Example 2.15

To calculate the control coefficients, we study the following reaction system:

P0$v1 S$v2 P2 ð2:135Þ
The flux control coefficients obey the theorems

CJ
1þCJ

2 ¼ 1 and CJ
1e

1
SþCJ

2e
2
S ¼ 0; ð2:136Þ

which can be solved for the control coefficients to yield

CJ
1 ¼

e2S
e2S�e1S

and CJ
2 ¼

�e1S
e2S�e1S

: ð2:137Þ

Since usually e1S < 0 and e2S > 0 (see Example 2.13), both control coefficients
assume positive values CJ

1 > 0 and CJ
2 > 0. This means that both reactions exert a

positive control over the steady-state flux, and acceleration of any of them leads to
increase of J, which is in accordance with common intuition.
The concentration control coefficients fulfil

CS
1 þCS

2 ¼ 0 and CS
1e

1
SþCS

2e
2
S ¼ �1; ð2:138Þ

which yields

CS
1 ¼

1
e2S�e1S

and CS
2 ¼

�1
e2S�e1S

: ð2:139Þ

With e1S < 0 and e2S > 0, we get CS
1 > 0 and CS

2 < 0, i.e., increase of the first
reaction causes a raise in the steady-state concentration of Swhile acceleration of the
second reaction leads to the opposite effect.

2.3.2.9 Derivation of Matrix Expressions for Control Coefficients
After having introduced the theorems of MCA, we will derive expressions for the
control coefficients in matrix form. These expressions are suited for calculating the
coefficients even for large-scale models. We start from the steady-state condition

NvðS stðpÞ; pÞ ¼ 0: ð2:140Þ
Implicit differentiation with respect to the parameter vector p yields

N
qv
qS

qS st

qp
þN

qv
qp
¼ 0: ð2:141Þ

Since we have chosen reaction-specific parameters for perturbation, the matrix of
nonnormalized parameter elasticities contains nonzero entries in the main diagonal
and zeros elsewhere (compare Eq. (2.115)).
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qv
qp
¼

qv1
qp1

0 0

0
qv2
qp2

0
. . .

0 0
qvr
qpr

0
BBBBBB@

1
CCCCCCA: ð2:142Þ

Therefore, this matrix is regular and has an inverse. Furthermore, we consider the
Jacobian matrix

M ¼ N
qv
qS
¼ N ~«: ð2:143Þ

The Jacobian M is a regular matrix if the system is asymptotically stable and
contains no conservation relations. The case with conservation relations is consid-
ered below.Here, wemay premultiply Eq. (2.141) by the inverse ofM and rearrange to
get

qS st

qp
¼ � N

qv
qS

� ��1
N

qv
qp
¼ �M�1N qv

qp
� ~R

S
: ð2:144Þ

As indicated, qSst/qp is the matrix of nonnormalized response coefficients for
concentrations. Postmultiplication by the inverse of the nonnormalized parameter
elasticity matrix gives

qS st

qp
qv
qp

� ��1
¼ � N

qv
qS

� ��1
N ¼ ~C

S
: ð2:145Þ

This is the matrix of nonnormalized concentration control coefficients. The right
(middle) site contains no parameters. Thismeans, that the control coefficients do not
depend on the particular choice of parameters to exert the perturbation as long as
Eq. (2.115) is fulfilled. The control coefficients are only dependent on the structure of
the network represented by the stoichiometric matrix N, and on the kinetics of the
individual reactions, represented by the nonnormalized elasticity matrix ~« ¼ qv=qS.
The implicit differentiation of

J ¼ vðS stðpÞ; pÞ; ð2:146Þ
with respect to the parameter vector p leads to

qJ
qp
¼ qv

qp
þ qv

qS
qS st

qp
¼ I� qv

qS
N

qv
qS

� ��1
N

 !
qv
qp
� ~R

J
: ð2:147Þ

This yields, after some rearrangement, an expression for the nonnormalized flux
control coefficients:

qJ
qp

qv
qp

� ��1
¼ I� qv

qS
N

qv
qS

� ��1
N ¼ ~C

J
: ð2:148Þ
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The normalized control coefficients are (by use of Eq. (2.120))

CJ ¼ I�ðdgJÞ�1 qv
qS

N
qv
qS

� ��1
N

 !
ðdgJÞ and

CS ¼ �ðdgS stÞ�1 N
qv
qS

� ��1
N

 !
ðdgJÞ:

ð2:149Þ

These equations can easily be implemented for numerical calculation of control
coefficients or used for analytical computation. They are also suited for derivation of
the theorems of MCA. The summation theorems for the control coefficients follow
from Eq. (2.149) by postmultiplication with the vector 1 (the row vector containing
only 1s), and consideration of the relations (dg J)�1¼ J and NJ¼ 0. The connectivity
theorems result from postmultiplication of Eq. (2.149) with the elasticity matrix
«¼ (dgJ)�1�(qv/qS)�dgSst, and using that multiplication of a matrix with its inverse
yields the identity matrix I of respective type.
If the reaction system involves conservation relations, we eliminate dependent

variables as explained in Section 1.2.4. In this case, the nonnormalized coefficients
read

~C
J ¼ I� qv

qS
L NR

qv
qS

� ��1
NR and ~C

S ¼ �L NR
qv
qS

� ��1
NR ð2:150Þ

and the normalized control coefficients are obtained by applying Eq. (2.120).
An example for calculation of flux control coefficients can be found in the web

material.
To investigate the implications of control distribution, we will now analyze the

control pattern in an unbranched pathway:

S0�!v1 S1�!v2 S2 � � � Sr�1$vr Sr ð2:151Þ
with linear kinetics vi¼ kiSi�1� k�iSi, the equilibrium constants qi¼ ki/k�i and fixed
concentrations of the externalmetabolites,S0 andSr. In this case, one can calculate an
analytical expression for the steady-state flux,

J ¼
S0
Qr
j¼1

qj�Sr
Pr
l¼1

1
kl

Qr
m¼l

qm

ð2:152Þ

as well as an analytical expression for the flux control coefficients

CJ
i ¼

1
ki

Yr
j¼i

qj

0
@

1
A � Xr

l¼1

1
kl

Yr
m¼l

qm

 !�1
: ð2:153Þ

Let us consider two very general cases. First assume that all reactionshave the same
individual kinetics, ki¼ kþ , k�i¼ k� for i¼ 1, . . ., r and that the equilibrium
constants, which are also equal, satisfy q¼ kþ /k�> 1. In this case, the ratio of two
subsequent flux control coefficients is
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CJ
i

CJ
iþ 1

¼ kiþ 1

ki
qi ¼ q > 1: ð2:154Þ

Hence, the control coefficients of the preceding reactions are larger than the control
coefficients of the succeeding reactions and flux control coefficients are higher in the
beginning of a chain than in the end. This is in agreement with the frequent
observation that flux control is strongest in the upper part of an unbranched reaction
pathway.
Now assume that the individual rate constants might be different, but that all

equilibrium constants are equal to one, qi¼ 1 for i¼ 1, . . . , r. This implies ki¼ k�i.
Equation (2.153) simplifies to

CJ
i ¼

1
ki
�
Xr
l¼1

1
kl

 !�1
: ð2:155Þ

Consider now the relaxation time ti¼ 1/(ki þ k�i) (see Section 4.3) as a measure for
the rate of an enzyme. The flux control coefficient reads

CJ
i ¼

ti
t1þ t2þ � � � þ tr

: ð2:156Þ

This expression helps to elucidate two aspects of metabolic control. First, all
enzymes participate in the control since all enzymes have a positive relaxation time.
There is no enzyme that has all control, i.e., determines the flux through the pathway
alone. Second, slow enzymes with a higher relaxation time exert in general more
control than fast enzymes with a short relaxation time.
The predictive power of flux control coefficients for directed changes of flux is

illustrated in the following example.

Example 2.16

Assume that we can manipulate the pathway shown in Figure 2.12 by changing the
enzyme concentration in a predefined way. We would like to explore the effect of the
perturbation of the individual enzymes. For a linear pathway (see Eqs. (2.151)–
(2.153)) consisting of four consecutive reactions, we calculate the flux control
coefficients. For i¼ 1, . . . , 4, it shall hold that (i) all enzyme concentrations Ei¼ 1,
(ii) the rate constants be ki¼ 2, k�i¼ 1, and (iii) the concentrations of the external
reactants be S0¼ S4¼ 1. The resulting flux is J¼ 1 and the flux control coefficients are
C J ¼ ð 0:533 0:267 0:133 0:067 ÞT according to Eq. (2.149).
If we now perturb slightly the first enzyme, lets say perform a percentage change of

its concentration, i.e., E1 ! E1 þ 1%, then Eq. (2.105) implies that the flux increases
as J! JþCJ

1 � 1%. In fact, the flux in the new steady state is JE1! 1:01 � E1 ¼ 1:00531.
Increasing E2, E3, or E4 by 1% leads to flux values of 1.00265, 1.00132, and 1.00066,
respectively. A strong perturbationwould not yield similar effects. This is illustrated in
Figure 2.12.
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2.4
Tools and Data Formats for Modeling

Summary

This section gives an overview about different simulation techniques and introduces
tools, resources, and standard formats used in systems biology. Modeling and
simulation functionalities of the tools are presented and common data formats used
by these tools and in general in systems biology are introduced. Furthermore, model
databases and databases of cellular and biochemical reaction networks are
discussed.

The development ofmodels of biological and in particular cellular systems starts by
the collection of themodel components and its interactions. Usually, in the first step,
one formulates the biochemical reaction equations that define the topological
structure of the reaction network and the reaction stoichiometries. For this purpose,
it is often also useful to draw a diagram that illustrates the network structure either of
the whole model or of a particular part. Once the reaction network and its stoichi-
ometry are defined, amore detailedmathematical model can be constructed. For this
purpose, often systems of ODEs are applied. Usually, this requires very detailed
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Figure 2.12 Effect of enzyme concentration
change on steady-state flux and on flux control
coefficients in an unbranched pathway
consisting of four reactions. In the reference
state, all enzymes have the concentration 1 (in
arbitrary units), the control distribution is the
same as in case (c), and the steady-state flux is
J¼ 1. (a) Change of E1 ! 5E1 while keeping the
other enzyme concentrations constant results in
a remarkable drop of control of the first enzyme.

The resulting flux is JE1! 5 �E1 ¼ 1:7741. (b) The
change E4 ! 5E4 corresponds to
JE4! 5 �E4 ¼ 1:0563. There is only slight changeof
control distribution. (c) Equal enzyme
concentrations with Ei ! 2Ei, i¼ 1, . . . , 4 results
in JEi! 2 �Ei ¼ 2. (d) Optimal distribution of
enzyme concentration E1¼ 3.124, E2¼ 2.209,
E3¼ 1.562, E4¼ 1.105 resulting in the maximal
steady-state flux Jmax¼ 2.2871.
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information about the kinetics of the individual reactions or appropriate assumptions
have to be made.
In this section, databases are presented that provide information on the network

structure of cellular processes such as metabolic pathways and signal transduction
pathways. Moreover, data formats used for the structural, mathematical, and graphi-
cal description of biochemical reaction networks are introduced. We will start this
section with an overview of simulation techniques and of software tools that support
the user by the development of models.

2.4.1
Simulation Techniques

In systems biology, different simulation techniques are used such as systems of
ODEs, stochastic methods, Petri nets, p-calculus, PDEs, cellular automata (CA)
methods, agent-based systems, and hybrid approaches. The use of ODEs in
biological modeling is widespread and by far the most common simulation
approach in computational systems biology [39, 40]. The description of a biological
model by a systemofODEs has already been discussed in the earlier sections. Some
ODEs are simple enough to be solved analytically and have an exact solution. More
complex ODE systems, as they are occurring in most systems biology simulations,
must be solved numerically by appropriate algorithms. A first method for the
numerical solution of ODEs was derived by Newton and Gauss. Methods that
provide more improved computational accuracy are, for instance, Runge–Kutta
algorithms and implicit methods that can also handle so-called stiff differential
equations. Simulation tools for systems biology have to cope with systems of
multiple reactants and multiple reactions. For the numerical integration of such
complex ODE systems, they usually make use of more advanced programs such as
LSODA [41, 42], CVODE [43], or LIMEX [44]. In the following, Petri nets andCA are
described in more detail.

2.4.1.1 Petri Nets
An alternative toODEs for the simulation of time-dependent processes are Petri nets.
A Petri net is a graphical and mathematical modeling tool for discrete and parallel
systems. The mathematical concept was developed in the early 1960s by Carl Adam
Petri. The basic elements of a Petri net are places, transitions and arcs that connect
places and transitions.When represented graphically, places are shown as circles and
transitions as rectangles. Places represent objects (e.g., molecules, cars, and
machine parts) and transitions describe if and how individual objects are inter-
converted. Places can contain zero ormore tokens, indicating the number of objects
that currently exist. If a transition can take place (can fire) or not depends on the
places that are connected to the transition by incoming arcs, to contain enough
tokens. If this condition is fulfilled, the transition fires and changes the state of the
system by removing tokens from the input places and adding tokens to the output
places. The number of tokens that are removed and added depends on the weights
of the arcs.
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Petri nets are not only an optically pleasing representation of a system but can
also be describedmathematically in terms of integer arithmetic. For simple types of
Petri nets, certain properties can thus be calculated analytically, but often the net
has to be run to study the long-term system properties. Over the years many,
extensions to the basic Petri net model have been developed for the different
simulation purposes [45].

1. Hybrid Petri nets that add the possibility to have places that contain a continuous
token number instead of discrete values.

2. Timed Petri nets extend transitions to allow for a specific time delay between the
moment when a transition is enabled and the actual firing.

3. Stochastic Petri nets that go one step further and allow a random time delay drawn
from a probability distribution.

4. Hierarchical Petri nets, in which modularity is introduced by representing whole
nets as a single place or transition of a larger net.

5. Colored Petri nets that introduce different types (colors) or tokens and more
complicated firing rules for transitions.

With these extensions, Petri nets are powerful enough to be used for models in
systems biology. Biochemical pathways can be modeled with places representing
metabolites, transitions representing reactions and stoichiometric coefficients
are encoded as different weights of input and output arcs. Consequently, Petri
nets have been used to model metabolic networks [46, 47] and signal transduc-
tion pathways [48]. Many free and commercial tools are available to explore
the behavior of Petri nets. The Petri Nets World webpage (http://www.informatik.
uni-hamburg.de/TGI/PetriNets/) is an excellent starting point for this
purpose.

2.4.1.2 Cellular Automata
Cellular Automata (CA) are tools for the simulation of temporal or spatiotemporal
processes using discrete time and/or spatial steps (see Section 3.4.1.3). A cellular
automaton consists of a regular grid or lattice of nearly identical components, called
cells, where each cell has a certain state of a finite number of states. The states of the
cells evolve synchronously in discrete time steps according to a set of rules. Each
particular state of cell is determined by the previous states of its neighbors. CA were
invented in the late 1940s by von Neumann and Ulam. Awell-known CA simulation
is Conway�s Game of Life [49].

2.4.2
Simulation Tools

In the following, three different simulation tools are presented that essentially make
use of ODE systems for simulation, and come along with further functionalities
important for modeling, such as graphical visualization of the reaction network,
advanced analysis techniques, and interfaces to external model and pathway data-
bases. Furthermodeling and simulation tools are presented in Chapter 17.Modeling
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and simulations tools have also been reviewed by Alves et al. [50], Klipp et al. [51],
Materi and Wishart [52], and Wierling et al. [53].
Modeling systems have to accomplish several requirements. They must have a

well-defined internal structure for the representation of model components and
reactions, and optionally functionalities for the storage of a model in a well-defined
structure, standardized format, or database. Further desired aspects are a user-
friendly interface for model development, a graphical representation of reaction
networks, a detailed description of the mathematical model, integrated simulation
engines, e.g., for deterministic or stochastic simulation, along with graphical
representations of those simulation results, and functionalities for model analysis
andmodel refinement. This is a very broad spectrumof functionalities. Existing tools
cover different aspects of these functionalities. In the following, systems biology tools
will be introduced that already accomplish several of the desired aspects. CellDe-
signer is one of those widely used in the systems biology community [51]. It has a
user-friendly process diagram editor, uses the Systems Biology Markup Language
(SBML; see Section 2.4.3.1) for model representation and exchange, and provides
fundamental simulation and modeling functions. Another program with similar
functionalities is COPASI. COPASI has an interface for the model definition and
representation and provides several methods for simulation, model analysis, and
refinement such as parameter scanning, MCA, optimization, or parameter estima-
tion. Similarly, also PyBioS has rich functionalities formodel design, simulation, and
analysis. In contrast to the stand-alone programs CellDesigner and Copasi, PyBioS is
aweb application. Aparticular feature of PyBioS is its interfaces to pathway databases,
like Reactome or KEGG, which can directly be used for model generation.

2.4.2.1 CellDesigner
CellDesigner provides an advanced graphical model representation along with an
easy to use user-interface and an integrated simulation engine [54]. The current
version ofCellDesigner is 4.0.1. The process diagrameditor ofCellDesigner supports
a rich set of graphical elements for the description of biochemical and gene-
regulatory networks. Networks can be constructed from compartments, species,
and reactions. CellDesigner comeswith a large number of predefined shapes that can
be used for different types of molecules, such as proteins, receptors, ion channels,
small metabolites, etc. It is also possible to modify the symbols to indicate phosphor-
ylations or other modifications. The program also provides several icons for special
reaction types like catalysis, transport, inhibition, and activation. For version 4.0, it is
announced that the graphical elements are compliant with the Systems Biology
Graphical Notation (SBGN; see Section 2.4.3.3).
Reading and writing of the models is SBML-based (see Section 2.4.3.1 for more

details onSBML) and themodelswritten byCellDesigner pass the online validation at
http://sbml.org/tools/htdocs/sbmltools.php and thus are conform with the SBML
standard. A nice feature in this respect is the ability to display the SBML model
structure as a tree (Figure 2.13, left side). A click on a species or reaction in this tree
highlights the corresponding elements in the graphics canvas and in the matching
tab on the right side showing further details. This tab is also the place where initial
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concentrations and reaction details are entered. CellDesigner allows entering
arbitrary kinetic equations, but has unfortunately no list of standard kinetics (mass
action orMichaelis–Menten) that could be applied. For each reaction, the rate law has
to be typed in by hand. A connection to the Systems Biology Workbench (SBW, see
Section 17.4) is realized via the SBWmenu andprovides an interface to communicate
with other SBW-compliant programs. For a further introduction to CellDesigner, a
tutorial can be obtained at its website (http://www.celldesigner.org/). A movie
introducing the usage of CellDesigner is availabe from the website of this book.

2.4.2.2 COPASI
Another platform-independent and user-friendly biochemical simulator that offers
several unique features is COPASI [55]. COPASI is the successor to Gepasi [56, 57].
Its current version is 4.4 (http://www.copasi.org/). COPASI does not have such a rich
visualization of the reaction network as CellDesigner, but it provides advanced
functionalities for model simulation and analysis. In contrast to many other tools,
it can switch between stochastic and deterministic simulationmethods and supports
hybrid deterministic-stochastic methods.

Figure 2.13 CellDesigner�s process diagram editor (a) supports a
rich set of graphical elements for different cellular species and
reaction types. Simulations can be performed in CellDesigner
using its integrated simulation engine (b).
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The user interface has a hierarchical menu (Figure 2.14, left side) that provides
access to all the different functionalities of the tool. The biochemical model can be
browsed according to its compartments, metabolites, and reactions including
detailed list of the initial concentrations and kinetic parameters of the model.
COPASI has a comprehensive set of standard methodologies for model analysis.
It comprises the computation of steady states and their stability, supports the analysis
of the stoichiometric network, e.g., the computation of elementary modes [25],
supportsMCA, and hasmethods for the optimization and parameter estimation. For
compatibility with other tools, COPASI also supports the import and export of SBML-
based models. For the definition of the kinetics, COPASI provides a copious set of
predefined kinetic laws to choose from. A movie that is introducing the usage of
COPASI is available from the website of this book.

2.4.2.3 PyBioS
Similarly as CellDesigner and Copasi, also PyBioS is designed for applications in
systems biology and supports modeling and simulation [53]. PyBioS is a web-based
environment (http://pybios.molgen.mpg.de/) that provides a framework for the
conduction of kinetic models of various sizes and levels of granularity. The tool is
amodeling platform for editing and analyzing biochemicalmodels in order to predict
the time-dependent behavior of the models. The platform has interfaces to external
pathway databases (e.g., Reactome andKEGG) that can directly be used duringmodel
development for the definition of the structure of the reaction system. Figure 2.15

Figure 2.14 The different functionalities of COPASI are arranged
in a hierarchicalmenu at left-hand side of its user interface.Details
about the individual methods are listed in the right panel.
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shows screenshots of the PyBioS modeling and simulation environment. PyBioS
defines a set of object classes (e.g., cell, compartment, compound, protein, complex,
gene) for the definition of hierarchical models. Models are stored in a model
repository. Support for the export and import of SBML-based models makes the
platform compatible with other systems biology tools. Besides time course simula-
tion, PyBioS also provides analysis methods, e.g., for the identification of steady
states and their stability or for sensitivity analysis, such as the analysis of the steady-
state behavior versus a varying parameter value or the computation of metabolic
control coefficients. The reaction network of a model or individual parts of it can be
visualized by network diagrams of themodel components and their reactions that are

Figure 2.15 The PyBioS simulation
environment. A particular model can be selected
from themodel repository (a) and its hierarchical
model structure can be inspected via the View-
tab at the top of the browser-window (b). A
graphical representation of the model is
provided by an automatically generated network
diagram (accessible via the Network-tab), for
example (c) shows the forward and reverse
reaction of the isomerization of glucose-

phosphate to fructose-phosphate of a glycolysis
model. The Reactions-tab offers an overview of
all reactions of themodel (d). Simulations can be
performed via the Simulation-tab (e). A
simulation is based on an automatically
generatedmathematical model derived from the
corresponding object-oriented model that
comprises the network of all reactions and their
respective kinetics.
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connected via edges. Time course results of simulation experiments can be plotted
into the network graphs and used for the interpretation of the model behavior.

2.4.3
Data Formats

The documentation and exchange of models need to be done in a defined way. In the
easiest way – as usually found in publications – the biochemical reactions and the
mathematical equations that are describing the model can be listed, using common
formalism for the representation of biochemical and mathematical equations. These
conventions provide a good standard for the documentation and exchange in pub-
lications. However, these formats are suitable for humans but not for the direct
processing by a computer. This gave rise to the development of standards for the
description of models. During the last years, the eXtensible Markup Language (XML,
http://www.w3.org/XML) has been proved to be a flexible tool for the definition of
standard formats. In the following text, a brief introduction to XML as well as a
description of SBML, a standard formodel description that is based on XML, is given.
Moreover,BioPAX,a standard for thedescriptioncellular reactionsystems, andSBGN,
a standard for the graphical representation of reaction networks, will be described.

2.4.3.1 Systems Biology Markup Language
The Systems Biology Markup Language (SBML, http://www.sbml.org) is a free and
open format for the representation of models common to research in many areas of
computational biology, including cell signaling pathways, metabolic pathways, gene
regulation, and others [58]. It is already supported by many software tools [59]. In
January 2009, the SBML homepage listed more than 110 software systems support-
ing SBML. Currently, there are two SBML specifications denoted Level 1 and Level 2.
Level 2 is the most recent specification and therefore it is described in the following
text.
SBML is defined as an XML compliant format. XML documents are written as

plain text and have a very clear and simple syntax that can easily be read by both
humans and computer programs; however, it is generally intended to be written and
read by computers, not humans. In XML, information is associated with tags
indicating the type or formatting of the information. Tags are used to delimit and
denote parts of the document or to add further information to the document
structure. Using miscellaneous start tags (e.g., <tag>) and end tags (e.g., </tag>),
information can be structured as text blocks in a hierarchical manner.

Example 2.17

The following example of the phosphorylation reaction of aspartate catalyzed by the
aspartate kinase illustrates the general structure of an SBML file.

AspartateþATP���������!Aspartate kinase
Aspartyl phosphateþADP
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(1) <?xml version=‘‘1.0’’ encoding=‘‘UTF-8’’?>

(2) <sbml level=‘‘2’’ version=‘‘1’’ xmlns=‘‘http://www.

sbml.org/sbml/level2’’>

(3) <model id=‘‘AK_reaction’’>

(4) <listOfUnitDefinitions>

(5) <unitDefinition id=‘‘mmol’’>

(6) <listOfUnits>

(7) <unit kind=‘‘mole’’ scale=‘‘-3’’ />

(8) </listOfUnits>

(9) </unitDefinition>

(10) <unitDefinition id=‘‘mmol_per_litre_per_sec’’>

(11) <listOfUnits>

(12) <unit kind=‘‘mole’’ scale=‘‘-3’’ />

(13) <unit kind=‘‘litre’’ exponent=‘‘-1’’ />

(14) <unit kind=‘‘second’’ exponent=‘‘-1’’ />

(15) </listOfUnits>

(16) </unitDefinition>

(17) </listOfUnitDefinitions>

(18) <listOfCompartments>

(19) <compartment id=‘‘cell’’ name=‘‘Cell’’ size=‘‘1’’

units=‘‘volume’’ />

(20) </listOfCompartments>

(21) <listOfSpecies>

(22) <species id=‘‘asp’’ name=‘‘Aspartate’’

compartment=‘‘cell’’ initialConcentration=‘‘2’’

substanceUnits=‘‘mmol’’ />

(23) <species id=‘‘aspp’’ name=‘‘Aspartyl phosphate’’

compartment=‘‘cell’’ initialConcentration=‘‘0’’

substanceUnits=‘‘mmol’’ />

(24) <species id=‘‘atp’’ name=‘‘ATP’’ compartment=‘‘cell’’

initialConcentration=‘‘0’’ substanceUnits=‘‘mmol’’ />

(25) <species id=‘‘adp’’ name=‘‘ADP’’ compartment=‘‘cell’’

initialConcentration=‘‘0’’ substanceUnits=‘‘mmol’’ />

(26) </listOfSpecies>

(27) <listOfReactions>

(28) <reaction id=‘‘AK’’ reversible=‘‘false’’>

(29) <listOfReactants>

(30) <speciesReference species=‘‘asp’’

stoichiometry=‘‘1’’ />

(31) <speciesReference species=‘‘atp’’

stoichiometry=‘‘1’’ />

(32) </listOfReactants>

(33) <listOfProducts>

(34) <speciesReference species=‘‘aspp’’

stoichiometry=‘‘1’’ />
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(35) <speciesReference species=‘‘adp’’ stoichiometry=

‘‘1’’ />

(36) </listOfProducts>

(37) <kineticLaw>

(38) <math xmlns=‘‘http://www.w3.org/1998/Math/

MathML’’>

(39) <apply>

(40) <times />

(41) <ci> k </ci>

(42) <ci> asp </ci>

(43) <ci> atp </ci>

(44) <ci> cell </ci> <ci> cell </ci>

(45) </apply>

(46) </math>

(47) <listOfParameters>

(48) <parameter id=‘‘k’’ value=‘‘2.25’’ units=‘‘per_mM_

and_min’’ />

(49) </listOfParameters>

(50) </kineticLaw>

(51) </reaction>

(52) </listOfReactions>

(53) </model>

(54) </sbml>

Line 1 in the above example defines the document as a XML document. The
SBML model is coded in lines 2–54. It is structured into several lists that define
different properties of the model. Most important lists that are usually used are the
definition of units (lines 4–17), of compartments (lines 18–20), of species (lines
21–26), and finally of the reactions themselves (lines 27–52). Most entries in SBML
have one required attribute, id, to give the instance a unique identifier by which
other parts of the SBML model definition can refer to it. Some base units, like
gram, meter, liter, mole, second, etc., are already predefined in SBML. More
complex units derived from the base units are defined in the list of units. For
instance, mM/s that is equal to mmol � l�1 sec�1 can be defined as shown in lines
10–16 and used by its id in the subsequent definition of parameters and initial
concentrations. Compartments are used in SBML as a construct for the grouping
of model species. They are defined in the list of compartments (lines 18–20) and
can be used not only for the definition of cellular compartments but also for
grouping in general. Each compartment can have a name attribute and defines a
compartment size. Model species are defined in the list of species. Each species
has a recommended id attribute that can be used to refer it and can define its
name and initial value with its respective unit. Species identifiers are used in the
list of reactions (lines 27–52) for the definition of the individual biochemical
reactions. Reversibility of a reaction is indicated by an attribute of the reaction tag
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(lines 28). Reactants and products of a specific reaction along with their respective
stoichiometry are specified in separate lists (lines 29–36).
The kinetic law of an individual reaction (lines 37–50) is specified in MathML

for SBML Level 2. MathML is an XML-based markup language especially created
for the representation of complicated mathematical expressions. In the above
example, the rate law reads k�[asp]�[atp]�cell2, where k is a kinetic parameter [asp]
and [atp] are the concentrations of aspartate and ATP, respectively, and cell is the
volume of the cell. The consideration of the cell volume is needed, since rate laws
in SBML are expressed in terms of amount of substance abundance per time
instead of the traditional expression in terms of amount of substance concen-
tration per time. The formulation of the rate law in the traditional way embodies
the tacit assumption that the participating reaction species are located in the
same, constant volume. This is done because attempting to describe reactions
between species located in different compartments that differ in volume by the
expression in terms of concentration per time quickly leads to difficulties.

2.4.3.2 BioPAX
Another standard format that is used in systems biology and designed for handling
information on pathways and topologies of biochemical reaction networks is BioPAX
(http://www.biopax.org). While SBML is tuned toward the simulation of models of
molecular pathways, BioPAX is a more general and expressive format for the
description of biological reaction systems even it is lacking definitions for the
representation of dynamic data such as kinetic laws and parameters. BioPAX is
defined by the BioPAX working group (http://www.biopax.org/). The BioPax Ontol-
ogy defines a large set of classes for the description of pathways, interactions, and
biological entities as well as their relations. Reaction networks described by BioPAX
can be represented by the use XML. Many systems biology tools and databases make
use of BioPAX for the exchange of data.

2.4.3.3 Systems Biology Graphical Notation
Graphical representations of reaction networks prove as very helpful tools for the
work in systems biology. The graphical representation of a reaction system is not
only helpful during the design of a new model and as a representation of the
model topology, it is also helpful for the analysis and interpretation for instance
of simulation results. Traditionally, diagrams of interacting enzymes and com-
pounds have been written in an informal manner of simple unconstrained
shapes and arrows. Several diagrammatic notations have been proposed for the
graphical representation (e.g., [60–64]). As a consequence of the different
proposals, the Systems Biology Graphical Notation (SBGN) has been set up
recently. It provides a common graphical notation for the representation of
biochemical and cellular reaction networks. SBGN defines a comprehensive set
of symbols, with precise semantics, together with detailed syntactic rules defin-
ing their usage. Furthermore, SBGN defines how such graphical information is
represented in a machine-readable form to ensure its proper storage, exchange,
and reproduction of the graphical representation.
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SBGN defines three different diagram types: (i) State Transition diagrams that
are depicting all molecular interactions taking place, (ii) Activity Flow diagrams that
are representing only the flux of information going from one entity to another, and
(iii) Entity Relationship diagrams that are representing the relationships between
different molecular species. In a State Transition diagram, each node represents a
given state of a species, and therefore a given species may appear multiple times.
State Transition diagrams are suitable for following the temporal process of inter-
actions. A drawback of State Transition diagrams, however, is that the representation
of each individual state of a species results quickly in very large diagram and due to
this, it becomes difficult to understand what interactions actually exist for the species
in question. In such a case, an Entity Relation diagram is more suitable. In an Entity
Relation diagram, a biological entity appears only once.
SBGN defines several kinds of symbols, whereas two types of symbols are

distinguished: nodes and arcs. There are different kinds of nodes defined. Reacting
state or entity nodes represent, e.g., macromolecules, such as protein, RNA, DNA,
polysaccharide, or simple chemicals, such as a radical, an ion, or a small molecule.
Container nodes are defined for the representation of a complex, compartment, or
module. Different transition nodes are defined for the representation of transitions
like biochemical reactions, associations, like protein-complex formation, or dissocia-
tions, like the dissociation of a protein complex. The influence of a node onto another
is visualized by different types of arcs representing, e.g., consumption, production,
modulation, stimulation, catalysis, inhibition, or trigger effect. Not all node and arc
symbols are defined for each of the three diagram types. A detailed description of the
different nodes, arcs, and the syntax of their usage by the different diagram types is
given in the specification of SBGN (see http://sbgn.org/).
Examples of a State Transition and an Entity Relationship diagram is given in

Figure 2.16.

2.4.3.4 Standards for Systems Biology
With the increasing amount of data inmodern biology the requirement of standards
used for data integration became more and more important. For example, in the
course of a microarray experiment, a lot of different information accumulates, as
information about the samples, the type of microarray that is used, the experimental
procedure including the hybridization experiment, the data normalization, and the
expression data itself. It turns out that an important part of systems biology is data
integration. This requires a conceptual design and the development of common
standards.
The development of a standard involves four steps: an informal design of a

conceptual model, a formalization, the development of a data exchange format, and
the implementation of supporting tools [65]. For micorarray experiments, a concep-
tual model about the minimum information that is required for the description of
such an experiment is specified by MIAME (Minimum Information About a
Microarray Experiment [65]). Similar specifications have also been done for, e.g.,
proteomics data with MIAPE (Minimum Information About a Proteomics Experi-
ment [66]), or systems biology models with MIRIAM (Minimum information
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requested in the annotation of biochemical models). MIRIAM specifies a set of rules
for curating quantitative models of biological systems that define procedures for
encoding and annotating models represented in machine-readable form [67].

2.4.4
Data Resources

The development of models of biological systems requires diverse kind of data. This
is, for instance, information about the different model components (e.g., metabo-
lites, proteins, and genes) and their different functions and interactions. Such
information can be extracted from literature or dedicated data resources, like pathway
databases. Two pathway databases that are well known are KEGG und Reactome.
Both are described below in more detail. Another important data for modeling are
information about reaction kinetics. Database dealingwith such data are described in

Figure 2.16 Systems Biology Graphical Notation
(SBGN). (a) State transition diagram. (b) Entity
relation diagram describing gene regulation and
transcription of a gene. The two transcription
factors TF A and TF A0 compete for the same
transcription factor-binding site. If one of the

transcription factors is bound, the binding site is
blocked for the other one, but only TF A can
activate the transcription of the gene. The
abbreviation �ct� indicates conceptual types of
the respective entity.
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more detail in Sections 2.4.4.2 and 3.1. Further information about databases
providing primary data is given in Chapter 16.

2.4.4.1 Pathway Databases

Kyoto Enzyclopedia of Genes and Genomes Kyoto Enzyclopedia of Genes and
Genomes (KEGG; http://www.genome.ad.jp/kegg/) is a reference knowledge base
offering information about genes and proteins, biochemical compounds and reac-
tions, and pathways. The data is organized in three parts: the gene universe
(consisting of the GENES, SSDB, and KO database), the chemical universe (with
the COMPOUND, GLYCAN, REACTION, and ENZYME databases which are
merged as LIGAND database), and the protein network consisting of the PATHWAY
database [68]. Besides this, the KEGG database is hierarchically classified into
categories and subcategories at four levels. The five topmost categories are metabo-
lism, genetic information processing, environmental informationprocessing, cellular
processes, and human diseases. Subcategories of metabolism are, e.g., carbohydrate,
energy, lipid, nucleotide, or amino acid metabolism. These are subdivided into
the different pathways, like glycolysis, citrate cycle, purine metabolism, etc. Finally,
the fourth level corresponds to the KO (KEGG Orthology) entries. A KO entry
(internally identified by a K number, e.g., K00001 for the alcohol dehydrogenase)
corresponds to a group of orthologous genes that have identical functions.
Thegeneuniverseoffers informationaboutgenesandproteinsgeneratedbygenome

sequencing projects. Information about individual genes is stored in the GENES
database, which is semiautomatically generated from the submissions to GenBank,
the NCBI RefSeq database, the EMBL database, and other publicly available organism-
specific databases. K numbers are further assigned to entries of the GENES database.
The SSDB database contains information about amino acid sequence similarities
between protein-coding genes computationally generated from the GENES database.
This is carried out for many complete genomes and results in a huge graph depicting
protein similarities with clusters of orthologous and paralogous genes.
The chemical universe offers information about chemical compounds and reac-

tions relevant to cellular processes. It includes more than 11,000 compounds
(internally represented by C numbers, e.g., C00001 denotes water), a separate
database for carbohydrates (nearly 11,000 entries; represented by a number preceded
by G, e.g., G10481 for cellulose), more than 6000 reactions (with R numbers, e.g.,
R00275 for the reaction of the superoxide radical into hydrogen peroxide), and more
than 4000 enzymes (denoted by EC numbers as well as K numbers for orthologous
entries). All these data are merged as LIGAND database [69]. Thus, the chemical
universe offers comprehensive information about metabolites with their respective
chemical structures and biochemical reactions.
KEGG�s protein network provides information about protein interactions com-

prisingpathways andprotein complexes. The 235KEGGreference pathwaydiagrams
(maps), offered on the website, give clear overviews of important pathways. Organ-
ism-specific pathway maps are automatically generated by coloring of organism-
specific genes in the reference pathways.
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The KEGG database can be queried via the web interface, e.g., for genes, proteins,
compounds, etc. Access to the data via FTP (http://www.genome.ad.jp/anonftp) as
well as access to it via a SOAP server (http://www.genome.ad.jp/kegg/soap) is
possible for academic users, too.

Reactome Reactome (formerly known as Genome Knowledgebase [70–72]) is an
open, online database of fundamental human biological processes. The Reactome
project is managed as a collaboration of the Cold Spring Harbor Laboratory,
the European Bioinformatics Institute (EBI), and the Gene Ontology Consortium.
The database is divided into severalmodules of fundamental biological processes that
arethought tooperate inhumans.Eachmoduleofthedatabasehasoneormoreprimary
authors and is further peer reviewed by experts of the specific field. Each module can
also be referenced by its revision date and thus can be cited like a publication.
On one hand, the Reactome database is intended to offer valuable information for

the wet-lab scientist, who wants to know, e.g., more about a specific gene product she
or he is unfamiliarwith.On the other hand, theReactomedatabase can be used by the
computational biologist to draw conclusions from large data sets like expression data
gained by cDNA chip experiments.
Another tool offered by Reactome is the �Pathfinder.� This utility enables the user

to find the shortest path between two physical entities, e.g., the shortest path between
the metabolites D-fructose and pyruvate, or the steps from the primary mRNA to its
processed form. The computed path can be shown graphically. The pathfinder offers
also the possibility to exclude specific entities, like themetabolites ATPorNADH that
show high connectivity and thus their input might lead to a path that is not the one
intended to be found.
Data fromReactome can be exported in various formats uponwhich are SBML and

BioPAX.

2.4.4.2 Databases of Kinetic Data
High-throughput projects, such as the international genome sequencing efforts,
accumulate large amounts of data at an amazing rate. These data are essential for the
reconstruction of phylogenetic trees and gene-finding projects. However, for kinetic
modeling, which is at the heart of systems biology, kinetic data of proteins and
enzymes are needed.Unfortunately, this type of data is notoriously difficult and time-
consuming to obtain since proteins often need individually tuned purification and
reaction conditions. Furthermore, the results of such studies are published in a large
variety of journals fromdifferent fields. In this situation, the databases BRENDA and
SABIO-RK aim to be comprehensive resources of kinetic data. They are discussed in
more detail in Section 4.1.1.

2.4.4.3 Model Databases
A lot of different mathematical models of biological systems have already been
developed in the past and are described in the literature. However, these models are
usually not available in a computer-amenable format. During the last years, big
efforts have been done on the gathering and implementation of existing models in
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databases. Two well-known databases on this are BioModels and JWS, which are
described in more detail in the following.

BioModels The BioModels.net project (http://biomodels.net) is an international
effort to (i) define agreed-upon standards for model curation, (ii) define agreed-upon
vocabularies for annotating models with connections to biological data resources,
and (iii) provide a free, centralized, publicly accessible database of annotated,
computational models in SBML, and other structured formats. The ninth release
of the databases has 192 models, of which 150 are in the curated and 42 are in the
noncurated branch. Models can be browsed in the web interface, online simulations
can be performed via the external simulation engine of JWS online (see below), or
they can be exported in several prominent file formats (e.g., SBML, CellML, BioPAX)
for external usage by other programs.

JWS Another model repository that is providing kinetic models of biochemical
systems is JWS online [73]. As of February 2008, this model repository provides 84
models (http://jjj.biochem.sun.ac.za). Models in JWS online can be interactively run
and interrogated over the internet.

Exercises and Problems

1. A canonical view of the upper part of glycolysis starts with glucose and
comprises the following reactions (in brackets: possible abbreviations): The
enzyme hexokinase (HK, E1) phosphorylates glucose (Gluc, S1) to glucose-6-
phosphate (G6P, S2) under consumption of ATP (S5) and production of ADP
(S6). The enzyme phosphoglucoisomerase (PGI, E2) converts glucose-6-phos-
phate to fructose-6-phosphate (F6P, S3). The enzyme phosphofructokinase
(PFK, E3) phosphorylates F6P a second time to yield fructose-1,6-bisphosphate
(F1,6,BP, S4). The enzyme fructosebisphosphatase catalyzes the reverse
reaction (E4).

(a) Sketch the reaction network and formulate a set of differential equations
(without specifying the kinetics of the individual reactions).

(b) Formulate the stoichiometric matrix N. What is the rank of N?
(c) Calculatesteady-state fluxes(matrixK) andconservation relations (matrixG).
(d) Compare your results with Example 2.6.

2. (a) Write down the sets of differential equations for the networks N1–N6
given in Table 2.4 without specifying their kinetics.

(b) Determine the rank of the stoichiometric matrices, independent steady-
state fluxes, and conservation relations.

Do all systems have a (nontrivial) steady state?

3. Inspect networks N3 and N4 in Table 2.4. Can you find elementary flux modes?
Use an available tool (e.g., Metatool) to check out.
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4. Assign the following kinetics to network N3 in Table 2.4: v1¼ k1, v2¼ (Vmax2�S1)/
(Km2þ S1), v3¼ (Vmax3�S1)/(Km3þ S1) with k1¼ 10, Vmax2¼ 3, Km2¼ 0.2, Vmax2

5, andKm2¼ 0.4. Compute the steady-state concentration of S1 and calculate the
flux control coefficients.

5. For the reaction system A�!v1 B; B�!v2 C; C�!v3 A with v1¼ k1�A, v2¼ k2�B, v3¼
k3�C, and k1¼ 2, k2¼ 2, k3¼ 1, write down the set of systems equations.

(a) Compute the Jacobian J!
(b) Determine the eigenvalues and eigenvectors of the Jacobian J!
(c) What is the general solution of the ODE system?
(d)Compute the solutionwith the initial conditionA(0)¼ 1,B(0)¼ 1,C(0)¼ 0!

6. The Jacobian Aa of the following ODE system depends on the parameter a:

d
dt

x
y

� �
¼ 0 �1

10þ a a

� �
x
y

� �

(a) To every specific choice of parameter a belongs a point (TrAa, DetAa) in the
plane spaned by trace and determinate of Aa. Draw the curve (Tr Aa, DetAa)
in this space for a as a changing parameter.

(b) For which values of a is (x,y)¼ (0,0) a saddle point, node or focus?

7. What is the use of standards important for the development of new systems
biology tools?
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3
Specific Biochemical Systems

Systems biology aims to understand structure, function, regulation, or development
of biological systemsby combining experimental and computational approaches. It is
important to understand that different parts of cellular organization are studied and
understood in different ways and to different extent. This is related to diverse
experimental techniques that can be used to measure the abundance of metabolites,
proteins, mRNA, or other types of compounds. For example, enzyme kinetic
measurements are performed for more than a century, while mRNAmeasurements
(e.g., as microarray data) or protein measurements (e.g., as mass spectrometry
analysis) have been developed more recently. Not all data can be provided with the
same accuracy and reproducibility. These and other complications in studying life
caused a nonuniform progress in modeling different parts of cellular life. Moreover,
the diversity of scientific questions and the availability of computational tools to tackle
them led to the development of very different types of models for different biological
processes. In this chapter, we will introduce a number of classical and more recent
areas of systems biological research. In the following, we discuss modeling of
metabolic systems, signaling pathways, cell cycle regulation, and development and
differentiation, primarily withODE systems, aswell as spatialmodeling of biochemi-
cal systems. In the web-material, we introduce approaches to synthetic biology,
population dynamics, aging, and pharmacokinetics.

3.1
Metabolic Systems

Summary

Living cells require energy and material for building membranes, storing molecules,
turnover of enzymes, replication and repair of DNA, movement, and many other
processes. Through metabolism, cells acquire energy and use it to build new cells.
Metabolism is the means by which cells survive and reproduce. Metabolism is the
general term for two kinds of reactions: (1) catabolic reactions (breakdown of
complex compounds to get energy and building blocks) and (2) anabolic reactions

Systems Biology: A Textbook. Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald,
Hans Lehrach, and Ralf Herwig
Copyright � 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31874-2
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(construction of complex compounds used in cellular functioning). Metabolism is a
highly organized process. It involves hundreds or thousands of reactions that are
catalyzed by enzymes.
Metabolic networks consist of reactions transforming molecules of one type into

molecules of another type. In modeling terms, the concentrations of the molecules
and their rates of change are of special interest. In Chapter 2, we explained how to
study such networks on three levels of abstraction:

1. Enzyme kinetics investigates the dynamic properties of the individual reactions in
isolation.

2. The network character of metabolism is studied with stoichiometric analysis
considering the balance of compound production and degradation.

3. Metabolic control analysis quantifies the effect of perturbations in the network
employing the dynamics of individual concentration changes and their integration
in the network.

Here, we will illustrate the theoretical concepts by applying them to a number of
examples. We will specifically discuss cellular energy metabolism focusing on
glycolysis and the threonine pathway as an example of amino acid synthesis. You
may find the complete models and many other models also in modeling databases
such as JWS online [1].

3.1.1
Basic Elements of Metabolic Modeling

Metabolic networks are defined by the enzymes converting substrates into products
in a reversible or irreversible manner. Without enzymes, those reactions are
essentially impossible or too slow. But networks are also characterized by the
metabolites that are converted by the various enzymes. Biochemical studies have
revealed a number of important catabolic pathways and pathways of the energy
metabolism such as glycolysis, the pentose-phosphate pathway, the tricarboxylic acid
(TCA) cycle, and oxidative phosphorylation. Among the known anabolic pathways are
gluconeogenesis, amino acid synthesis pathways, and synthesis of fatty acids and
nucleic acids. Databases such as the Kyoto Encyclopedia of Genes and Genomes
Pathway (KEGG, http://http://www.genome.jp/kegg/pathway.html) provide a com-
prehensive overview of pathways in various organisms.
Here, we will focus on pathway characteristics, which are essential for modeling.

Figure 3.1 provides a summary of the first steps to build a model. First, we can
sketch the metabolites and the converting reactions in a cartoon to get an overview
and an intuitive understanding. Based on that cartoon and on further information,
we must set the limits of our model. That means, we must consider what kind of
question we want to answer with our model, what information in terms of
qualitative and quantitative data is available, and how we can make the model as
simple as possible but as comprehensive as necessary. Then, for every com-
pound, which is part of the system, we formulate the balance equations (see also
Section 2.2) summing up all reaction that produce the compound (with a positive
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sign) and all reaction that degrade the compound (with a negative sign). At this
stage, the model is suited for a network analysis such as stoichiometric
analysis (Section 2.2) or, with some additional information, flux balance analysis
(Section 9.1). In order to study the dynamics of the system, we must add kinetic
descriptions to the individual reactions. Keep in mind that the reaction kinetics may
depend on

. the concentrations of substrates and products (here G1P and G6P),

. specific parameters such as Km-values,

. the amount and activity of the catalyzing enzyme (here hidden in the Vmax values,
see Section 2.1), and

. the activity of modifiers, which are not shown in the example in Figure 3.1.

In the following, we will discuss in more detail models for three pathways: the
upper glycolysis, the full glycolysis, and the threonine synthesis.

3.1.2
Toy Model of Upper Glycolysis

A first model of the upper part of glycolysis is depicted in Figure 3.2. It comprises six
reactions and six metabolites. Note that we neglect the formation of phosphate Pi
here. The ODE system reads

Figure 3.1 Designing metabolic models. (a) Basic elements of
metabolic networks and (b) basic steps for designing structured
dynamic models (see the text for further explanation).
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d
dt
Glucose ¼ v1�v2

d
dt
Gluc6P ¼ v2�v3

d
dt
Fruc6P ¼ v3�v4þ v5

d
dt
Fruc1; 6P2 ¼ v4�v5�v6

d
dt
ATP ¼ � d

dt
ADP ¼ �v2�v4þ v7:

ð3:1Þ

With mass action kinetics, the rate equations read v1¼ const.¼ k1, v2¼
k2�Glucose�ATP, v3¼ k3�Gluc6P� k�3�Fruc6P, v4¼ k4�Fruc6P�ATP, v5¼ k5�Fruc1,6P2,
v6¼ k6�Fruc1,6P2, and v7¼ k7�ADP. Given the values of the parameters ki, i¼ 1,. . .,7
and the initial concentrations, one may simulate the time behavior of the network as
depicted in Figure 3.3.
We see that startingwith zero concentrations of all hexoses (here glucose, fructose,

and their phosphorylated versions), they accumulate until production and degrada-
tion are balanced. Finally, they approach a steady state. ATP rises and then decreases
in the same way as ADP decreases and rises, while their sum remains constant. This
is due to the conservation of adenine nucleotides, which could be revealed by
stoichiometric analysis (Section 2.2).
For this upper glycolysis model, the concentration vector is S¼ (Glucose, Gluc6P,

Fruc6P, Fruc1,6P2, ATP, ADP)
T, the vector of reaction rates is v¼ (v1, v2, . . ., v7)

T,
and the stoichiometric matrix reads

N ¼

1 �1 0 0 0 0 0
0 1 �1 0 0 0 0
0 0 1 �1 1 0 0
0 0 0 1 �1 �1 0
0 �1 0 �1 0 0 1
0 1 0 1 0 0 �1

0
BBBBBB@

1
CCCCCCA: ð3:2Þ

It comprises r¼ 7 reactions and has Rank N¼ 5. Thus, the kernel matrix (see
Section 2.2.2) has two linear independent columns. A possible representation is

Pi

v v2 v3

v4

Fruc1,6P2Fruc6PGluc6PGlucose

ATP  ADP

ATP  ADP

v5
1 v6

v7

Figure 3.2 Toymodel of the upper glycolysis. The
model involves the reactions glucose uptake (v1),
the phosphorylationof glucoseunder conversion
of ATP to ADP by the enzyme hexokinase (v2),
intramolecular rearrangments by the enzyme
phosphoglucoisomerase (v3), a second
phosphorylation (and ATP/ADP conversion) by

phosphofructokinase (v4), dephosphorylation
without involvement of ATP/ADP by fructose-
bisphosphatase (v5), and splitting of the hexose
(6-C-sugar) into two trioses (3-C-sugars) by
aldolase (v6). Abbreviations: Gluc-6P – glucose-
6-phosphate, Fruc-6P – fructose-6-phosphate,
Fruc-1,6P2 – fructose-1,6-bisphosphate.
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K ¼ k1 k2ð Þ with k1 ¼ 0 0 0 1 1 0 1ð ÞT;
k2 ¼ 1 1 1 �1 �2 1 0ð ÞT: ð3:3Þ

Figure 3.4 shows the flux and concentration control coefficients (see Section 2.3.2)
for the model of upper glycolysis in gray scale (see scaling bar). Reaction v1 has a
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Figure 3.3 Dynamic behavior of the upper
glycolysis model (Figure 3.2 and Eq. (3.1)). Initial
conditions at t¼ 0: Glucose(0)¼Gluc-6P(0)¼
Fruc-6P(0)¼ Fruc-1,6P2(0)¼ 0 and ATP(0)¼
ADP(0) ¼ 0.5 (arbitrary units). Parameters:
k1¼ 0.25, k2¼1,k3¼1, k-3¼1, k4¼1,k5¼1, k6¼1,
and k7¼ 2.5. The steady-state concentrations are
Glucosest¼ 0.357, Gluc-6Pst¼ 0.714, Fruc-6Pst¼

0.964, Fruc-1,6P2
st¼ 0.2, and ATPst¼ 0.7, and

ADPst ¼ 0.25. The steady-state fluxes are
J1¼ J2¼ J3¼ J5¼ J6¼ 0.25, J4¼ 0.5,and J7¼ 0.75.
(a) Time-course plots (concentration versus
time), (b) phase-plane plot (concentrations
versus concentrationofATPwith varying time); all
curves start at ATP¼ 0.5 for t¼ 0.
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Figure 3.4 Flux and concentration control coefficients for the
glycolysis model in Figure 3.2 with the parameters given in the
legend of Figure 3.3. Values of the coefficients are indicated in
gray-scale: gray means zero control, white or light gray indicates
positive control, dark gray or black negative control, respectively.
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flux control of 1 over all steady-state fluxes, reactions v2, v3, v4, and v7 have no control
over fluxes; they are dominated by v1. Reactions v5 and v6 have positive or negative
control over J4, J5, and J7, respectively, since they control the turnover of fructose
phosphates.
The concentration control shows amore interesting pattern. As a rule of thumb, it

holds that producing reactions have a positive control and degrading reactions have a
negative control, such as v1 and v2 for glucose. But also distant reactions can exert
concentration control, such as v4 to v6 over Gluc6P.
More comprehensive models of glycolysis can be used to study details of the

dynamics, such as the occurrence of oscillations or the effect of perturbations.
Examples are the models of Hynne and colleagues [2] or the Reuss group [3, 4]. An
overview of the most important reactions in glycolysis is given in Figure 3.5.

3.1.3
Threonine Synthesis Pathway Model

Threonine is an amino acid, which is essential for birds andmammals. The synthesis
pathway fromaspartate involvesfive steps (Figure 3.6). It is known for a long time and
has attracted some interest with respect to its economic industrial production for a
variety of uses. The kinetics of all the five enzymes from Escherichia coli have been

3
Gluc6P

21 4
1 222

(a) (b)
Glucoseex

Fruc6P

ATP  ADP

Glucose

5
ATP  ADP

21
ADPATP

1 2
3

4
5

6

19

18

20
21

22

Fruc1,6P2

ATP

ADP
6 722

2ADPATP + AMP 8

7

10
9

17

16
15

14

GAPDHAPGlyc6PGlyc

8

9 NAD+

13

11

NAD+ NADH

10

12

13 12 11
14

G
lu

co
se

ex

(c)

BPG

NADH

ADP  

ATPATP  ADP
17

NAD+ NADH

Glycex

14

G

PEPPyrACA

ACAex

Ethanol

Ethanolex

1519

1820 16

P
E

P

Figure 3.5 Full glycolysis models. (a) Main reactions and
metabolites, (b) network of reactions connected by common
metabolites, (c) network of metabolites connected by common
reactions.
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studied extensively; the complete genome sequence of this organism is now known
and there is an extensive range of genetic tools available. The intensive study and the
availability of kinetic information make it a good example for metabolic modeling of
the pathway.
The reaction system can be described with the following set of differential

equations:

d
dt
Asp ¼ �vAKI�vAKIII

d
dt
AspP ¼ vAKIþ vAKIII�vASD

d
dt
ASA ¼ vASD�vHDH

d
dt
HS ¼ vHDH�vHK

d
dt
HSP ¼ vHK�vTS
d
dt
Thr ¼ vTS;

ð3:4Þ

with

vAKI¼
VAKI � Asp�ATP�AspP �ADP

Keq;AK

� �

KAsp;AKI �
1þ

�
Thr

KiThr;AKI

�h1

1þ Thr
aAKI �KiThr;AKI

� �h1
þAspP � KAsp;AKI

KAspP;AKI
þAsp

0
B@

1
CA� KATP;AKI � 1þ ADP

KADP;AKI

� �
þATP

� �

Keq,AK¼ 6.4� 10�4,KAsp,AKI¼ 0.97� 0.48mM,KATP,AKI¼ 0.98� 0.5mM,KAspP, AKI¼
0.017� 0.004mM, KADP,AKI¼ 0.25mM, KiThr,AKI¼ 0.167� 0.003mM, h1¼ 4.09� 0.26,

O-P-homoserineHomoserineASAAspartylPAspartate Threonine
vAK

ATP  ADP

vASD

NADPH
+

vHDH vHK

ATP  ADP

vTS

H20     PiNADP+ NADPH
+

NADP+

(Asp) (AspP) (HS) (HSP) (Thr)

Lysine Methionine

+H +PLP+H

Figure 3.6 Model of the threonine pathway. Aspartate is
converted into threonine in five steps. Threonine exerts negative
feedback on its producing reactions. The pathway consumes ATP
and NADPH.
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aAKI¼ 2.47� 0.17,

vAKIII¼
VAKIII � Asp �ATP�AspP �ADP

Keq; AK

� �
1þ Lys

K1Lys

� �hLys
� �

KAsp;AKIII 1þ AspP
KAspP; AKIII

� �
þAsp

� �
� KATP;AKIII 1þ ADP

KADP; AKIII

� �
þATP

� �

Keq,AK¼ 6.4� 10�4, KAsp,AK III¼ 0.32� 0.08mM, KATP,AK III¼ 0.22� 0.02mM
KAspP,AK III¼ 0.017� 0.004mM, KADP,AK III¼ 0.25mM, KiLys¼ 0.391� 0.08mM,
hLys¼ 2.8� 1.4,

vASD¼
VASD � AspP �NADPH�ASA �NADPþ �Pi

Keq;ASD

� �
KAspP;ASD 1þ ASA

KASA;ASD

� �
� 1þ Pi

KPi

� �
þAspP

� �
� KNAPDH 1þ NADPþ

KNADPþ

� �
þNADPH

� �

Keq,ASD¼ 2.84� 105, KAspP,ASD¼ 0.022� 0.001mM, KNADPH,ASD¼ 0.029� 0.002
mM, KASA,ASD¼ 0.11� 0.008mM, KNADPþ ;ASD¼0:144�0:02mM, KPi ¼10:2�
1:4mM,

vHDH¼
VHDH � ASA�NADPH�HS�NADPþ

Keq;HDH

� �
1þ Thr

KiThr;2

� �h2

1þ Thr
a2 �KiThr;2

� �h2

0
B@

1
CA KASA;HDH 1þ HS

KHS;HDH

� �
þASA

� �
� KNADPH;HDH 1þ NADPþ

KNADPþ ;AKIII

� �
þNADPH

� �

Keq,HDH¼ 1� 1011 M�1, KASA,HDH¼ 0.24� 0.03mM, KNADPH,HDH¼ 0.037�
0.006mM, Khs,HDH¼ 3.39� 0.33mM, KNADPþ ;HDH¼0:067�0:006mM, KiThr,2¼ 0.097
mM, h2¼ 1.41, a2¼ 3.93,

vHK¼ VHK �hs�ATP
KHS;HK 1þ ATP

KiATP;HK

� �
� 1þ Thr

KiThr;HK

� �
þhs

� �
� KATP;HK 1þ hs

KiHS;HK

� �
þATP

� �
� 1þ Lys

KiLys;HK

� �

KHS,HK¼ 0.11mM, KATP,HK¼ 0.072mM, KiThr,HK¼ 1.09mM, KiLys,HK¼ 9.45mM,
KiHS,HK¼ 4.7mM, KiATP,HK¼ 4.35mM

vTS¼ VTS �HSP
KHSP;TSþHSP

KHSP;TS¼0:31�0:03mM:

This system has no nontrivial steady state, i.e., no steady state with nonzero flux,
since aspartate is always degraded, while threonine is only produced. The same
imbalance holds for the couples ATP/ADP and NADPHþHþ/NADPþ . The
dynamics is shown in Figure 3.7.
Threonine exerts feedback inhibition on the pathway producing it. This is

illustrated in Figure 3.8. The higher the threonine concentration, the lower the
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Figure 3.7 Dynamics of the threonine pathwaymodel (Figure 3.6,
Eq. (3.4)). The parameters are given in the text.
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Figure 3.8 Effect of feedback inhibition in the model depicted in Figure 3.6.

rates of inhibited reactions. The effect is that production of threonine is down-
regulated as long as its level is sufficient, thereby saving aspartate and energy.

3.2
Signaling Pathways

Summary

This section introduces the structure of different cellular signaling pathways and their
typical constituents such as receptors, G proteins, MAP kinase cascades, or phos-
phorelay systems. Different modeling approaches and various specific models are
discussed. We analyze how the structure of pathways encoded in respective model
assumptions determines the steady states and dynamic properties of signaling
pathways. To describe the dynamic properties of signaling pathways, quantitative
measures are used to assess the amplitude and duration of a signal or the crosstalk
between distinct signaling pathways.
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3.2.1
Introduction

Upon intercellular communication or cellular stress response, the cell senses
extracellular signals. They are transformed into intracellular signals and sequences
of reactions. Different external changes or events may stimulate signaling. Typical
stimuli are hormones, pheromones, heat, cold, light, osmotic pressure, appearance,
or concentration change of substances like glucose or Kþ , Caþ , or cAMP.
On amolecular level, signaling involves the same type of processes asmetabolism:

production or degradation of substances,molecularmodifications (mainly phosphor-
ylation, but also methylation, acetylation), and activation or inhibition of reactions.
From a modeling point of view, there are some important differences between
signaling andmetabolism.First, signalingpathways serve for informationprocessing
and transfer of information, while metabolism provides mainly mass transfer.
Second, themetabolic network is determinedby thepresent set of enzymes catalyzing
the reactions. Signaling pathways involve compounds of different types; they may
formhighly organized complexes andmay assemble dynamically upon occurrence of
the signal. Third, the quantity of converted material is high inmetabolism (amounts
are usually given in concentrations on the order of mM or mM) compared to the
numberofmolecules involved insignalingprocesses (typical abundanceofproteins in
signal cascades ison theorderof10–104moleculespercell).Finally,differentamounts
of components have an effect on the concentration ratio of catalysts and substrates. In
metabolism, thisratio isusually low, i.e., theenzymeconcentration ismuchlowerthan
thesubstrateconcentration,whichgivesrise to thequasi-steadystateassumptionused
in Michaelis–Menten kinetics (Section 2.1). In signaling processes, amounts of
catalysts and their substrates are frequently in the same order of magnitude.
Modeling of the dynamic behavior of signaling pathways is often not straightfor-

ward. Knowledge about components of the pathway and their interactions is still
limited and incomplete. The interpretation of experimental data is context- and
knowledge-dependent. Furthermore, the effect of a signal often changes the state of
the whole cell, and this implies difficulties for determination of system limits. But in
many cases, we may apply the same tools as introduced in Chapter 2.

3.2.2
Function and Structure of Intra- and Intercellular Communication

Cells have a broad spectrum of molecular �facilities� to receive and process signals;
not all of them can be considered here. A typical sequence of events in signaling
pathways is shown in Figure 3.9 and proceeds as follows.
The �signal� (a substance acting as ligand or a physical stimulus) approaches the

cell surface and is bound or sensed by a transmembrane receptor. The receptor
changes its state from susceptible to active and stimulates an internal signaling
cascade. This cascade frequently includes a series of changes of protein phosphor-
ylation states. Activated proteins may cross the nuclear membrane and, eventually,
transcription factors are activated or deactivated. Such a transcription factor
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changes its binding properties to regulatory regions on the DNAupstream of a set of
genes; the transcription rate of these genes is altered (typically increased). Either
newly produced proteins or the changes in protein concentration cause the actual
response of the cell to the signal. In addition to this downstream program, signaling
pathways are regulated by a number of control mechanisms including feedback and
feed-forward activation or inhibition. Fast tracks of signal transduction work without
changes in gene expression by changing binding properties or activity pattern of
proteins (e.g., binding of Ste5 to Gbg or regulation of Fps1 by Hog1P2).
This is the typical picture; however, many pathways may work in completely

differentmanner. As example, an overview on signaling pathways that are stimulated
in yeast stress response is given in Figure 3.10.

3.2.3
Receptor–Ligand Interactions

Many receptors are transmembrane proteins; they receive the signal and transmit it.
Upon signal sensing, they change their conformation. In the active form, they are
able to initiate a downstream process within the cell (Figure 3.11).

Figure 3.9 Visualization of the signaling
paradigm (for description see the text). The
receptor is stimulated by a ligand or another kind
of signal, and it changes its own state from
susceptible to active. The active receptor initiates
the internal signaling cascade including a series
of protein phosphorylation state changes.

Subsequently, transcription factors are activated
or deactivated. The transcription factors regulate
the transcription rate of a set of genes. The
absolute amount or the relative changes in
protein concentrations alter the state of the cell
and trigger the actual response to the signal.
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The simplest concept of the interaction between receptor R and ligand L is
reversible binding to form the active complex LR:

LþR$ LR: ð3:5Þ
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Figure 3.10 Overview on signaling pathways in
yeast: HOG pathway activated by osmotic shock,
pheromone pathway activated by a pheromone
from cells of opposite mating type, and
pseudohyphal growth pathway stimulated by
starvation conditions. In each case, the signal
interactswith the receptor. The receptor activates
a cascade of intracellular processes including
complex formations, phosphorylations, and
transport steps. A MAP kinase cascade is a
particular part of many signaling pathways; their

components are indicated by bold border.
Eventually, transcription factors are activated that
regulate the expression of a set of genes. Beside
the indicated connections, further interactions of
components are possible. For example, crosstalk
may occur, that is the activation of the
downstream part of one pathway by a
component of another pathway. This is
supported by the frequent incidence of some
proteins like Ste11 in the scheme.

Figure 3.11 Schematic representation of receptor activation.
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The dissociation constant is calculated as

KD ¼ L �R
LR

: ð3:6Þ

Typical values for KD are 10�12–10�6M.
Cells have the ability to regulate the number and the activity of specific receptors,

for example, in order to weaken the signal transmission during long-term stimula-
tion. Balancing production and degradation regulates the number of receptors.
Phosphorylation of serine/threonine or tyrosine residues of the cytosolic domain by
protein kinases mainly regulates the activity. Hence, a more realistic scenario for
ligand–receptor interaction is depicted in Figure 3.12(a).
For a more detailed model, we assume that the receptor is present in an inactive

stateRi or in a susceptible stateRs. The susceptible formcan interactwith the ligand to
form the active state Ra. The inactive or the susceptible forms are produced from
precursors (vpi, vps); all three forms may be degraded (vdi, vds, vda). The rates of
production and degradation processes as well as the equilibria between different
states might be influenced by the cell�s state, for example, by the cell-cycle stage. In
general, the dynamics of this scenario can be described by the following set of
differential equations:

d
dt
Ri ¼ vpi�vdi�visþ vsiþ vai

d
dt
Rs ¼ vps�vdsþ vis�vsi�vsaþ vas

d
dt
Ra ¼ �vdaþ vsa�vas�vai:

ð3:7Þ
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Figure 3.12 Receptor activation by ligand.
(a) Schematic representation: L – ligand,
Ri – inactive receptor, Rs – susceptible receptor,
Ra – active receptor. vp� – production steps,
vd� – degradation steps, other steps – transition
between inactive, susceptible, and active state of
receptor. (b) Time course of active (red line)

and susceptible (blue line) receptor after
stimulation with 1mMa-factor at t¼ 0. The total
number of receptors is 10,000. The
concentration of the active receptor increases
immediately and then declines slowly while the
susceptible receptor is effectively reduced to
zero.
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For the production terms, we may either assume constant values or (as mentioned
above) rates that depend on the current cell state. The degradation terms
might be assumed to be linearly dependent on the concentration of their
substrates (vd� ¼ kd� �R� ). This may also be a first guess for the state changes
of the receptor (e.g., vis¼ kis�Ri). The receptor activation is dependent on the ligand
concentration (or any other value related to the signal). A linear approximation of
the respective rate is vsa¼ ksa�Rs�L. If the receptor is a dimer or oligomer, it
might be sensible to include this information into the rate expression for
receptor activation as vsa ¼ ksa �Rs �Kn

B � Ln=ð1þKn
B � LnÞ, where KB denotes

the binding constant to the monomer and n the Hill coefficient (Section 2.1,
Eq. (2.44)).

Example 3.1

An experimentally confirmed example for the activation of receptor and G protein of
the pheromone pathway has been presented by Yi and colleagues [5] for the binding
of the pheromone a-factor to the receptor Ste2 in yeast. Concerning the receptor
activation dynamics, they report a susceptible and an active form of the receptor,
but no inactive form (Ri¼ 0, v� i¼ vi� ¼ 0). The remaining rates are determined as
follows:

vps ¼ kps
vds ¼ kds �Rs

vda ¼ kda �Ra

vsa ¼ ksa �Rs � L
vas ¼ kas �Ra;

ð3:8Þ

with the following values for the rate constants: kps¼ 4 molecules per cell per
second, kds¼ 4� 10�4 s�1, kda¼ 4� 10�3 s�1, ksa¼ 2� 106M�1 s�1, and kas¼
1� 10�2 s�1. The time course of receptor activation is depicted in Figure 3.12.

3.2.4
Structural Components of Signaling Pathways

Signaling pathways may constitute highly complex networks, but it has been
discovered that they are frequently composed of typical building blocks. These
components include Ras proteins, G protein cycles, phosphorelay systems, and
MAP kinase cascades. In this section, we will discuss their general composition and
function as well as modeling approaches.

3.2.4.1 G proteins
Gproteins are essential parts ofmany signaling pathways. The reason for their name
is that they bind the guanine nucleotides GDP andGTP. They are heterotrimers, i.e.,
they consist of three different subunits. Note the difference to small G proteins
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consisting of one monomer, which are discussed below. G proteins are associated to
cell surface receptors with a heptahelical transmembrane structure, the G protein-
coupled receptors (GPCR). Signal transduction cascades involving (i) such a trans-
membrane surface receptor, (ii) an associated G protein, and (iii) an intracellular
effector that produces a second messenger play an important role in cellular
communication and are well-studied [6, 7]. In humans, GPCR mediate responses
to light, flavors, odors, numerous hormones, neurotransmitters, and other signals
[8–10]. In unicellular eukaryotes, receptors of this type mediate signals that affect
such basic processes as cell division, cell–cell fusion (mating), morphogenesis, and
chemotaxis [8, 11–13].
The cycle of G protein activation and inactivation is shown in Figure 3.13. When

GDP is bound, the G protein a subunit (Ga) is associated with the G protein bg
heterodimer (Gbg) and is inactive. Ligand binding to a receptor promotes guanine
nucleotide exchange; Ga releases GDP, binds GTP, and dissociates from Gbg . The
dissociated subunits Ga or Gbg , or both, are then free to activate target proteins
(downstream effectors), which initiates signaling. When GTP is hydrolyzed, the
subunits are able to reassociate. Gbg antagonizes receptor action by inhibiting
guanine nucleotide exchange. Regulator of G protein signaling (RGS) proteins bind
to Ga, stimulate GTP hydrolysis, and thereby reverse G protein activation. This
general scheme also holds for the regulation of small monomeric Ras-like GTPases,
such as Rho. In this case, the receptor, Gbg , and RGS are replaced by GEF and GAP
(see below).
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Figure 3.13 Activation cycle of G protein.
(a) Without activation, the heterotrimeric G
protein is bound to GPD. Upon activation by the
activated receptor, an exchange of GDPwith GTP
occurs and the G protein is divided into
GTP-bound Ga and the heterodimer Gbg .
Ga-bound GTP is hydrolyzed, either slowly in
reaction vh0 or fast in reaction vh1 supported by

the RGSprotein. GDP-boundGa can reassociate
with Gbg (reaction vsr). (b) Time course of G
protein activation. The total number of
molecules is 10,000. The concentration of
GDP-boundGa is low for thewhole period due to
fast complex formation with the heterodimer
Gbg .
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Direct targets include different types of effectors, such as adenylyl cyclase,
phospholipase C, exchange factors for small GTPases, some calcium and potassium
channels, plasma membrane Naþ /Hþ exchangers, and certain protein kinases
[6, 14–16]. Typically, these effectors produce secondmessengers or other biochemical
changes that lead to stimulation of a protein kinase or a protein kinase cascade (or, as
mentioned, are themselves a protein kinase). Signaling persists until GTP is
hydrolyzed to GDP and the Ga and Gbg subunits reassociate, completing the cycle
of activation. The strength of the G protein–initiated signal depends on (i) the rate of
nucleotide exchange, (ii) the rate of spontaneousGTPhydrolysis, (iii) the rate of RGS-
supported GTP hydrolysis, and (iv) the rate of subunit reassociation. RGS proteins
act as GTPase-activating proteins (GAPs) for a variety of different Ga classes.
Thereby, they shorten the lifetime of the activated state of a Gprotein, and contribute
to signal cessation. Furthermore, theymay contain additionalmodular domains with
signaling functions and contribute to diversity and complexity of the cellular
signaling networks [17–20].

Example 3.2

The model of the heterotrimeric G protein cycle of the yeast pheromone pathway
was alreadymentioned in Example 3.1 and it is linked to the receptor activationmodel
via the concentration of the active receptor. TheG protein cyclemodel comprises two
ODEs and two algebraic equations for themass conservation of the subunits Ga and
Gbg :

d
dt

Gabg ¼ �vgaþ vsr

d
dt

GaGTP ¼ vga�vh0�vh1
Gtotala ¼ Gabg þGaGTPþGaGDP

Gtotalbg ¼ Gabg þGbg :

ð3:9Þ

The rate equations for the G protein activation, vga, the hydrolysis of
GaGTP, vh0 and vh1, and the subunit reassociation, vsr, follow simple mass action
kinetics:

vga ¼ kga �Ra �Gabg

vhi ¼ khi �GaGTP; i ¼ 0; 1

vsr ¼ ksr �Gbg �GaGDP:

ð3:10Þ

The parameters are kga¼ 1� 10�5 (molecule per cell)�1 s�1, kh0¼ 0.004 s�1,
kh1¼ 0.11 s�1, and ksr¼ 1(molecule per cell)�1 s�1. Note that in the original work,
two different yeast strains have been considered. For the strains with a constantly
active RGS (SST2þ ) or with a deletion of RGS (sst2D), the rate constants kh1 and kh0
have been set to zero, respectively. The time courses are shown in Figure 3.13.
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3.2.4.2 Small G proteins
Small G proteins are monomeric G proteins with molecular weight of 20–40 kDa.
Like heterotrimeric G proteins, their activity depends on the binding of GTP. More
than a hundred small G proteins have been identified. They belong to five families:
Ras, Rho, Rab, Ran, and Arf. They regulate a wide variety of cell functions as
biological timers that initiate and terminate specific cell functions and determine the
periods of time [21].
Ras proteins cycle between active and inactive states (Figure 3.14). The transition

fromGDP-bound toGTP-bound states is catalyzed by a guanine nucleotide exchange
factor (GEF), which induces exchange between the boundGDPand the cellular GTP.
The reverse process is facilitated by a GAP, which induces hydrolysis of the bound
GTP. Its dynamics can be described with the following equation with appropriate
choice of the rates vGEF and vGAP:

d
dt
RasGTP ¼ � d

dt
RasGDP ¼ vGEF�vGAP

vGEF ¼ k1 �GEF �RasGDP
ðKm1þRasGDPÞ and vGAP ¼ k2 �GAP �RasGTP

ðKm2þRasGTPÞ :
ð3:11Þ

Figure 3.14 illustrates the wiring of a Ras protein and the dependence of its activity
on the concentration ratio of the activating GEF and the deactivating GAP.
Mutations of the Ras protooncogenes (H-Ras, N-Ras, K-Ras) are found in many

human tumors.Most of thesemutations result in the abolishment of normalGTPase
activity of Ras. The Ras mutants can still bind to GAP, but cannot catalyze GTP
hydrolysis. Therefore, they stay active for a long time.
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Figure 3.14 The Ras activation cycle. (a) Wiring
diagram: GEF supports the transition formGDP-
bound toGTP-bound states to activate Ras, while
GAP induces hydrolysis of the bound GTP
resulting in Ras deactivation. (b) Steady states of
active Ras depending on the concentration ratio
of its activator GEF and the inhibitor GAP. We
compare the behavior for a model with mass
action kinetics (curve a) with the behavior

obtained with Michaelis–Menten kinetics for
decreasing values of the Km-value (curves b–d).
The smaller theKm-value, themore sigmoidal the
response curve, leading to an almost steplike
shape in the case of very low Km-values.
Parameters: Rastotal¼RasGTP þ RasGDP¼ 1,
k1¼ k2¼ 1 (all curves), (b) Km1¼ Km2¼ 1,
(c) Km1¼ Km2¼ 0.1, (d) Km1¼Km2¼ 0.001.
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3.2.4.3 Phosphorelay Systems
Most phosphorylation events in signaling pathways take place under repeated
consumption of ATP. Phosphorelay (also called phosphotransfer) systems employ
another mechanism: after an initial phosphorylation using ATP (or another phos-
phate donor), the phosphate group is transferred directly from one protein to the next
without further consumption of ATP (or external donation of phosphate). Examples
are the bacterial phosphoenolpyruvate:carbohydrate phosphotransferase [22–25], the
two-component system of E. coli (see also Section 6.4 on robustness) or the Sln1
pathway involved in osmoresponse of yeast [26].
Figure 3.15 shows a scheme of a phosphorelay system from the high osmolarity

glycerol (HOG) signaling pathway in yeast as well as a schematic representation of a
phosphorelay system.
The phosphorelay system in the yeast HOGpathway is organized as follows [27]. It

involves the transmembrane protein Sln1,which is present as a dimer.Under normal
conditions, the pathway is active, since Sln1 continuously autophosphorylates at a
histidine residue, Sln1H-P, under consumption of ATP. Subsequently, this phos-
phate group is transferred to an aspartate residue of Sln1 (resulting in Sln1A-P), then
to a histidine residue of Ypd1, and finally to an aspartate residue of Ssk1. Ssk1 is
continuously dephosphorylated by a phosphatase. Without stress, the proteins
are mainly present in their phosphorylated form. The pathway is blocked by an
increase in the external osmolarity and a concomitant loss of turgor pressure in the
cell. The phosphorylation of Sln1 stops, the pathway runs out of transferable
phosphate groups, and the concentration of unphosphorylated Ssk1 rises. This is
the signal for the next part of the pathway. The temporal behavior of a generalized
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Figure 3.15 Schematic representation of a phosphorelay system.
(a) Phosphorelay system belonging to the Sln1-branch of the
HOG pathway in yeast. (b) General scheme of phosphorylation
and dephosphorylation in a phosphorelay.
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phosphorelay system (Figure 3.15) can be described with the following set of ODEs:

d
dt
A ¼ �k1 �Aþ k2 �AP �B

d
dt
B ¼ �k2 �AP �Bþ k3 �BP �C

d
dt
C ¼ �k3 �BP �Cþ k4 �CP:

ð3:12Þ

For the ODE system in Eq. (3.12), the following conservation relations hold:

Atotal ¼ AþAP

Btotal ¼ BþBP

Ctotal ¼ CþCP:

ð3:13Þ

The existence of conservation relations is in agreement with the assumption that
production and degradation of the proteins occurs on a larger time scale than the
phosphorylation events.
The temporal behavior of a phosphorelay system upon external stimulation (here,

setting the value of k1 transiently to zero) is shown in Figure 3.16. Before the
stimulus, the concentrations of A, B, and C assume low, but nonzero, levels due to
continuous flow of phosphate groups through the network. During stimulation, they
increase one after the other up to a maximal level that is determined by the total
concentration of each protein. After removal of stimulus, all three concentrations
return quickly to their initial values.
Figure 3.16(b) illustrates how the sensitivity of the phosphorelay systemdepends on

the value of the terminal dephosphorylation of CP. For a low value of the rate constant
k4, e.g., k4< 0.001, the concentrationC is low (almost) independent of the value of k1,
while for high k4, e.g., k4> 10, the concentration C is (almost always) maximal.
Changing of k1 leads to a change of C-levels only in the range 0.001< k4< 10.
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Figure 3.16 Dynamics of the phosphorelay system. (a) Time
courses after stimulation from time 100 to time 500 (a.u.) by
decreasing k1 to zero. (b) Dependence of steady-state level of the
phosphorelay output, C, on the cascade activation strength, k1,
and the terminal dephosphorylation, k4. Parameter values:
k1¼ k2¼ k3¼ 1, k4¼ 0.02, Atotal¼Btotal¼Ctotal¼ 1.
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This system is an example for a case where we can draw preliminary conclusions
about feasible parameter values just from the network structure and the task of the
module. Another example for a phosphorelay system is discussed in Section 7.4.

3.2.4.4 MAP Kinase Cascades
Mitogen-activated protein kinases (MAPKs) are a family of serine/threonine kinases
that transduce biochemical signals from the cell membrane to the nucleus in
response to a wide range of stimuli. Independent or coupled kinase cascades
participate inmany different intracellular signaling pathways that control a spectrum
of cellular processes, including cell growth, differentiation, transformation, and
apoptosis.MAPK cascades are widely involved in eukaryotic signal transduction, and
MAP kinase pathways are conserved from yeast to mammals.
A general scheme of a MAPK cascade is depicted in Figure 3.17. This pathway

consists of several levels (usually three to four),where the activatedkinase at each level
phosphorylates thekinaseat thenext leveldownthecascade.TheMAPkinase (MAPK)
is at the terminal level of the cascade. It is activated by theMAPK kinase (MAPKK) by
phosphorylationof twosites, conserved threonine and tyrosine residues.TheMAPKK
is itself phosphorylated at serine and threonine residues by the MAPKK kinase
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Figure 3.17 Schematic representation of theMAPkinase cascade.
An upstream signal (often by a further kinase called MAP kinase
kinase kinase kinase) causes phosphorylation of the MAPKKK.
The phosphorylated MAPKKK in turn phosphorylates the protein
at the next level. Dephosphorylation is assumed to occur
continuously by phosphatases or autodephosphorylation.
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(MAPKKK). Several mechanisms are known to activate MAPKKKs by phosphoryla-
tion of a tyrosine residue. In some cases, the upstream kinasemay be considered as a
MAPKKK kinase (MAPKKKK). Dephosphorylation of either residue is thought to
inactivate the kinases, andmutants lacking either residue are almost inactive. At each
cascade level, protein phosphatases can inactivate the kinase, although it is in some
cases a matter of debate whether this dephosphorylation is performed by an inde-
pendent protein or by the kinase itself as autodephosphorylation. Also ubiquitin-
dependent degradation of phosphorylated proteins has been reported.
Although they are highly conserved throughout different species, elements of the

MAPK cascade got different names in various studied systems. Some examples are
listed in. Table 3.1 (see also [28]).
In the following, we will present typical modeling approaches for MAPK cascades

and then discuss their functional properties. Their dynamics may be represented by
the following ODE system:

d
dt
MAPKKK ¼ �v1þ v2

d
dt
MAPKKK -P ¼ v1�v2

ð3:14Þ

d
dt
MAPKK ¼ �v3þ v4

d
dt
MAPKK -P ¼ v3�v4�v5þ v6

d
dt
MAPKK -P2 ¼ v5�v6:

ð3:15Þ

d
dt
MAPK ¼ �v7þ v8

d
dt
MAPK -P ¼ v7�v8�v9þ v10

d
dt
MAPK -P2 ¼ v9�v10:

ð3:16Þ

The variables in the ODE system fulfill a set of moiety conservation relations,
irrespective of the concrete choice of expression for the rates v1, . . ., v10. It holds,

Table 3.1 Names of the components of MAP kinase pathways in
different organisms and different pathways.

Organism Budding yeast Xensopus
oocytes

Human, cell cycle regulation

HOG
pathway

Pheromone
pathway

p38
pathway

JNK
pathway

MAPKKK Ssk2/Ssk22 Ste11 Mos Rafs (c-, A- and B-), Tak1 MEKKs
MAPKK Pbs2 Ste7 MEK1 MEK1/2 MKK3/6 MKK4/7
MAPK Hog1 Fus3 p42 MAPK ERK1/2 p38 JNK1/2
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MAPKKKtotal ¼ MAPKKK þMAPKKK -P

MAPKKtotal ¼ MAPKK þMAPKK -PþMAPKK -P2

MAPKtotal ¼ MAPK þMAPK -PþMAPK-P2:

ð3:17Þ

The conservation relations reflect the fact that we do not consider production or
degradation of the involved proteins in thismodel. This is justified by the supposition
that protein production and degradation take place on a different time scale than
signal transduction.
The choice of the expressions for the rates is a matter of elaborateness of

experimental knowledge and of modeling taste. We will discuss here different
possibilities. First, assuming only mass action results in linear and bilinear expres-
sion such as

v1 ¼ kkinase �MAPKKK �MAPKKKK

v2 ¼ kphosphatase �MAPKKK -P:
ð3:18Þ

The kinetic constants kkinase and kphosphatase are first- and second-order rate
constants, respectively. In these expressions, the concentrations of the donor and
acceptor of the transferred phosphate group, ATP and ADP, are assumed to be
constant and included in the rate constants. Considering ATP and ADP explicitly
results in

v1 ¼ kkinase� �MAPKKK �MAPKKKK �ATP
v2 ¼ kphosphatase �MAPKKK -P:

ð3:19Þ

In this case, we have to care about the ATP–ADP balance and add three more
differential equations

d
dt
ATP ¼ � d

dt
ADP ¼ �

X
i odd

vi

d
dt
Pi ¼

X
i even

vi:
ð3:20Þ

Here we find two more conservation relations, the conservation of adenine
nucleotides, ATP þ ADP¼ const. and the conservation of phosphate groups

MAPKKK -PþMAPKK -Pþ 2 �MAPKK -P2þMAPK-P

þ 2 �MAPK -P2þ 3 �ATPþ 2 �ADPþP ¼ const: ð3:21Þ

Second, one may assume that the kinases catalyzing the phosphorylation of the
next kinase behave like saturable enzymes (e.g., [29]) and, therefore, consider
Michaelis–Menten kinetics for the individual steps (e.g., [30]). Taking again the first
and second reaction as examples for kinase and phosphatase steps, we get

v1 ¼ k1 �MAPKKKK
MAPKKK

Km1þMAPKKK

v2 ¼ Vmax2 �MAPKKK -P
Km2þMAPKKK -P

;

ð3:22Þ
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where k1 is afirst-order rate constant,Km1 andKm2 areMichaelis constants, andVmax2

denotes a maximal enzyme rate. Reported values for Michaelis constants are
15 nM [30], 46 and 159 nM [31], and 300 nM [29]. For maximal rates, values of about
0.75 nM � s�1 [30] are used in models.
The performance of MAPK cascades, i.e., their ability to amplify the signal, to

enhance the concentration of the double phophorylatedMAPKnotably, and the speed
of activation, depends crucially on the kinetic constants of the kinases, kkinase, and
phosphatases, kphosphatase (Eq. (3.19)), and, moreover, on their ratio (see Figure 3.18).
If the ratio kkinase/kphosphatase is low (phosphatases stronger than kinases), then the
amplification is high, but at very low absolute concentrations of phosphorylated
MAPK. High values of kkinase/kphosphatase ensure high absolute concentrations of
MAPK-P2, but with negligible amplification. High values of both kkinase and
kphosphatase ensure fast activation of downstream targets.
Frequently, the proteins ofMAPK cascades interact with scaffold proteins. Binding

to scaffold proteins can bring the kinases together in the correct spatial order or can
reduce their diffusion through the cytosol or provide an anchor to the plasma
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Figure 3.18 Parameter dependence of MAPK
cascade performance. Steady-state simulations
for changing values of rate constants for kinases,
kkinase, and phosphatases, kphosphatase- are shown
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kphosphatase. (b) Ratio of the output signal for high
versus low input signal (MAPKKKK¼ 0.1 or
MAPKKKK¼ 0.01) for varying ratio of kkinase/
kphosphatase. (c) Time course of MAPK activation
for different values of kkinase and a ratio kkinase/
kphosphatase¼ 20. (d) Time course of MAPK
activation for different values of kkinase and fixed
kphosphatase¼ 1.
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membrane. This way, they contribute to the regulation of the efficiency, specificity,
and localization of the signaling pathway.

3.2.4.5 Jak/Stat Pathways
Jak–Stat pathways play an important role in regulating immune responses andcellular
homeostasis in human health and disease [32, 33]. They are activated by cytokines, a
large family of extracellular ligands. The whole family of structurally and functionally
conserved receptors comprises four Jaks and seven Stats. As is the case formany types
of receptor families, downstream signaling entails tyrosine phosphorylation. Stat
stands for �signal transducer and activator of transcription,� because these proteins
function both as signal transducer and transcription activator. They are inactive as
monomers. Activation involves phosphorylation and dimerization.
A mathematical model of the Jak–Stat pathway presented by Swamaye and

colleagues (2003) presupposes the binding of the ligand (here the hormone Epo)
to the receptor (EpoR) that results in phosphorylation of Jak2 and of the cytoplasmatic
domainofEpoR.Themodel involves the recruitment ofmonomericStat5 (x1¼Stat5)
to phosphorylated and thereby activated receptor, EpoRA.Upon receptor recruitment,
monomeric Stat5 is tyrosine phosphorylated (x2¼Stat5-P). It dimerizes in a second
step to yield x3, andmigrates in the third step to the nucleus (x4), where it binds to the
promoter of target genes. After it has fulfilled its task, it is dephosphorylated and
exported to the cytoplasm(fourth step).Using simplemass actionkinetics for the four
steps indicated in Figure 3.19, the respective ODE system reads

dx1ðtÞ
dt
¼ �k1 � x1ðtÞ �EpoRAþ 2 � k4 � x3ðt�tÞ

dx2ðtÞ
dt
¼ �k2 � x22ðtÞþ k1 � x1ðtÞ �EpoRA

dx3ðtÞ
dt
¼ �k3 � x3ðtÞþ 1

2
k2 � x22ðtÞ

dx4ðtÞ
dt
¼ �k4 � x3ðt�tÞþ k3 � x3ðtÞ:

ð3:23Þ

The parameter t represents the delay time that Stat5molecules have to reside in the
nucleus. This model has been used to show that recycling of Stat5 molecules is an
important event in the activation cycle and necessary to explain experimental data.
In the web material, we present a model of the human Erbk signaling network

consisting of a receptor and several signaling pathways including a MAPK pathway,
which shows interesting feedback and crosstalk phenomena.

3.2.5
Signaling – Dynamic and Regulatory Features

Signaling pathways can exhibit interesting dynamic and regulatory features. Repre-
sentative pathway structures that form the basis for characteristic dynamic behaviors
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(so-called dynamic motifs) are discussed in detail in Section 8.2. Among the various
regulatory features of signaling pathways, negative feedback has attracted outstand-
ing interest. It also plays an important role in metabolic pathways, for example, in
amino acid synthesis pathways,where anegative feedback signal from the amino acid
at the end to the precursors at the beginning of the pathway prevents an overpro-
duction of this amino acid. The implementation of feedback and the respective
dynamic behavior show a wide variation. Feedback can bring about limit cycle type
oscillations, for instance, in cell cycle models [34]. In signaling pathways, negative
feedback may cause an adjustment of the response or damped oscillations.

3.2.5.1 Quantitative Measures for Properties of Signaling Pathways
The dynamic behavior of signaling pathways can be quantitatively characterized by a
number ofmeasures [35]. LetPi(t) be the time-dependent concentration of the kinase
i (or another interesting compound). The signaling time ti describes the average time
to activate the kinase i. The signal duration Wi gives the average time during which
the kinase i remains activated. The signal amplitude Si is a measure for the average
concentration of activated kinase i. The following definitions have been introduced.
The quantity

Ii ¼
ð1
0
PiðtÞdt ð3:24Þ

Figure 3.19 The Jak–Stat signaling pathway. Upon binding ligand,
receptor-associated Jaks become activated and mediate
phosphorylation of specific receptor tyrosine residues. This leads
to the recruitment of specific Stats, which are then also tyrosine-
phosphorylated. Activated Stats are released from the receptor,
dimerize, translocate to the nucleus, and bind to enhancers.
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measures the total of active kinase i generated during the signaling period, i.e., the
integrated response of Xi (the area covered by a plot Pi(t) versus time). Further
measures are

Ti ¼
ð1
0
t �PiðtÞdt and Qi ¼

ð1
0
t2 �PiðtÞdt: ð3:25Þ

The signaling time can now be defined as

ti ¼ Ti

Ii
; ð3:26Þ

i.e., as the average of time, analogous to a center of time, or to the mean value of a
statistical distribution. The signal duration

Wi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qi=Ii�t2i

q
ð3:27Þ

gives a measure of how the signaling response extends around the mean time
(compatible to standard deviation). The signal amplitude is defined as

Ai ¼ Ii
2Wi

: ð3:28Þ

In a geometric representation, this is the height of a rectangle whose length is 2Wi
andwhose area equals the area under the curvePi(t). Note that thismeasuremight be
different from the maximal value Pmax

i that Pi(t) assumes during the time course.
Figure 3.20 shows a signaling pathway with successive activation of compounds

and the respective time courses. The characteristic quantities are given in Table 3.2
and for P1(t) shown in the figure.
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Figure 3.20 Characteristic measures for
dynamic variables. (a) Wiring of an example
signaling cascade with vif¼ kif �Pi�1(t)�(1� Pi(t)),
vir¼ kir�Pi(t), kif¼ kir¼ 1, dP0(t)/dt¼�P0(t),
P0(0)¼ 1, Pi(0)¼ 0 for i¼ 1, . . ., 3. (b) Time
courses of Xi. The horizontal lines indicate the

concentration measures for X1, i.e., the
calculated signal amplitude A1 and Pmax

1 , and
vertical lines indicate time measures for P1, i.e.,
the time tmax

1 of Pmax
1 , the characteristic time t1,

and the dotted vertical lines cover the signaling
time W1.
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3.2.5.2 Crosstalk in Signaling Pathways
Signal transmission in cellular context is often not as precise as in electric circuits in
the sense that an activated protein has a high specificity for just one target. Instead,
theremight be crosstalk, i.e., proteins of one signaling pathway interact with proteins
assigned to another pathway. Strictly speaking, the assignment of proteins to one
pathway is often arbitrary and may result, for example, from the history of their
function discovery. Frequently, protein interactions form a network with various
binding, activation, and inhibition events, such as illustrated in Figure 3.10.
In order to introduce quantitative measures for crosstalk, let us consider the

simplified scheme in Figure 3.21: external signal a binds to receptor RA, which
activates target TA via a series of interactions. In the sameway, external signal b binds
to receptor RB, which activates target TB. In addition, there are processes thatmediate
an effect of receptor RB on target TA.
Let us concentrate on pathway A and define all measures from its perspective.

Signaling from a via RA to TA shall be called intrinsic, while signals from b to TA are
extrinsic. Further, in order to quantify crosstalk, we need a quantitative measure for
the effect of an external stimulus on the target. We have different choices: if we are
interested in the level of activation, such a measure might be the integral over
the time course of TA (Eq. (3.24)), itsmaximal value, or its amplitude (Eq. (3.28)). Ifwe
are interested in the response timing, we can consider the time of the maximal value
or the characteristic time (for an overview on measures, see Table 3.2). Whatever
measure we chose, it shall be denoted by X in the following.

Table 3.2 Dynamic characteristics of the signaling cascade shown in Figure 3.15.

Compound Integral,
Ii

Maximum,
Xi
max

Time (Xmax
i ),

tmax
i

Characteristic
time, si

Signal
duration, qi

Signal
amplitude, Ai

X1 0.797 0.288 0.904 2.008 1.458 0.273
X2 0.695 0.180 1.871 3.015 1.811 0.192
X3 0.629 0.133 2.855 4.020 2.109 0.149

Signal α Signal β

Receptor RA Receptor RA

Target TA Target TB

intrinsic
signal

extrinsic
signal

Figure 3.21 Crosstalk of signaling pathways.
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The crosstalk measure C is the activation of pathway A by the extrinsic stimulus b
relative to the intrinsic stimulus a

C ¼ Xextrinsic

Xintrinsic
¼ XTAðbÞ

XTAðaÞ
: ð3:29Þ

The fidelity F [36] is defined as output due to the intrinsic signal divided by the
output in response to the extrinsic signal and reads in our notation:

F ¼ XTAðaÞ=XRAðaÞ
XTAðaÞ=XRBðbÞ

: ð3:30Þ

In addition, the intrinsic sensitivity Si expresses how an extrinsic signal modifies
the intrinsic signal when acting in parallel, while the extrinsic sensitivitySe quantifies
the effect of the intrinsic signal on the extrinsic signal [37]:

SiðAÞ ¼ XTAðaÞ
XTAða; bÞ

and SeðAÞ ¼ XTAðbÞ
XTAða; bÞ

: ð3:31Þ

Table 3.3 shows how different specificity values can be interpreted.

Example 3.3

Consider the coupling of a faster and a slower signaling pathway as depicted
in Figure 3.21, described with rate equations used in Figure 3.22 with the
exception v3Af¼ k3Af � (P2A(t) þ P2B(t)) � (1� P3A(t)). Let A be the slower pathway
(all kiAf¼ kiAr¼ 1) and B the faster pathway (all kiBf¼ kiBr¼ 10). The pathways are
activated by setting either P0A(0) or P0B(0) or both from zero to one, respectively.
The time courses show that crosstalk from pathway B to pathway A affects the
pathway output P3A(t). Concomitant activation of A by a and B by b leads to faster
activation of P3A(t) than a alone. Activation by b alone leads to drastically reduced
P3A(t). Table 3.4. reports the quantitative crosstalk measures. We note mutual signal
amplification in terms of integrated response (I3A) and maximal response
(Max(P3A)), but dominance of the intrinsic signal on the level of signal timing (here
tmax
P3A ).

Table 3.3 Effect of crosstalk on signaling.

Se> 1 Se< 1

Si> 1 Mutual signal inhibition Dominance of intrinsic signal
Si< 1 Dominance of extrinsic signal Mutual signal amplification
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3.3
The Cell Cycle

Summary

The cell cycle is a fundamental cellular process that dominates many aspects of
cellular biochemistry. In this section, different phases of the mitotic cell cycle are
introduced. The regulatory mechanisms that control the periodic process are
discussed and mathematical models of different complexity that describe the
oscillatory process are introduced.

Growth and reproduction are major characteristics of life. Crucial for these is
the cell division by which one cell divides into two and all parts of the mother cell are
distributed to the daughter cells. This also requires that the genome has to be
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Figure 3.22 Crosstalk of MAP kinase pathways. (a) Pathway A
leads to activation of P3A upon stimulation by a, pathway B
transmits signal from b to P3B. Crosstalk occurs through signaling
from P2B. (b) Dynamics of pathways A and B upon stimulation by
a, b, or both (as indicated).

Table 3.4 Crosstalk measures for the pathway in Example 3.3.

XA (a) XA (b) XA (a, b) SiðAÞ ¼ XAðaÞ
XAða;bÞ SeðAÞ ¼ XAðbÞ

XAða;bÞ C ¼ XAðbÞ
XAðaÞ

I3 ¼
Ð1
0 P3AðtÞdt 0.628748 0.067494 0.688995 0.912557 0.09796 0.107347

tmax
P3A

2.85456 0.538455 2.73227 1.04476 0.197072 0.18863
Max(P3A) 0.132878 0.0459428 0.136802 0.971314 0.335833 0.345752
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duplicated in advance, which is performed by the DNA polymerase, an enzyme
that utilizes desoxynucleotide triphosphates (dNTPs) for the synthesis of two
identical DNA double strands from one parent double strand. In this case, each
single strand acts as template for one of the new double strands. Several types of
DNA polymerases have been found in prokaryotic and eukaryotic cells, but all of
them synthesize DNA only in 50 ! 30 direction. In addition to DNA polymerase,
several further proteins are involved in DNA replication: proteins responsible for
the unwinding and opening of the mother strand (template double strand), proteins
that bind the opened single stranded DNA and prevent it from rewinding during
synthesis, an enzyme called primase that is responsible for the synthesis of short
RNA primers that are required by the DNA polymerase for the initialization of
DNA polymerization, and a DNA ligase responsible for linkage of DNA fragments
that are synthesized discontinuously on one of the two template strands because of
the limitation to 50 ! 30 synthesis. Like the DNA, also other cellular organelles have
to be doubled, such as the centrosome involved in the organization of the mitotic
spindle.
The cell cycle is divided into two major phases: the interphase and the M phase

(Figure 3.23). The interphase is often a relatively long period between two subsequent
cell divisions. Cell division itself takes place duringMphase and consists of two steps:
first, the nuclear division in which the duplicated genome is separated into two parts,
and second, the cytoplasmatic division or cytokinesis, where the cell divides into two
cells. The latter not only distributes the two separated genomes between each of the
newly developing cells, but also divides up cytoplasmatic organelles and substances
between them. Finally, the centrosome is replicated and divided between both cells as
well.
DNA replication takes place during interphase in the so-called S phase (S¼

synthesis) of the cell cycle (Figure 3.23). This phase is usually preceded by a gap
phase, G1, and followed by another gap phase, G2. FromG1 phase, cells can also leave
the cell cycle and enter a rest phase, G0. The interphase normally represents 90% of
the cell cycle. During interphase, the chromosomes are dispersed as chromatin in the
nucleus. Cell division occurs during M phase, which follows the G2 phase, and
consists of mitosis and cytokinesis. Mitosis is divided into different stages. During
the first stage – the prophase – chromosomes condense into their compact form and
the two centrosomes of a cell begin recruiting microtubles for the formation of the
mitotic spindle. In later stages of mitosis, this spindle is used for the equal
segregation of the chromatides of each chromosome to opposite cellular poles.
During the following prometaphase, the nuclear envelope dissolves and the micro-
tubles of the mitotic spindle attach to protein structures, called kinetochores, at the
centromeres of each chromosome. In the following metaphase, all chromosomes
line up in the middle of the spindle and form the metaphase plate. Now, during
anaphase, the proteins holding together both sister chromatids are degraded
and each chromatid of a chromosome segregate into opposite directions. Finally,
during telophase, new nuclear envelopes are recreated around the separated
genetic materials and form two new nuclei. The chromosomes unfold again into
chromatin. The mitotic reaction is often followed by a cytokinesis where the cellular
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membrane pinches off between the two newly separated nuclei and two new cells are
formed.
The cell cycle is strictly controlled by specific proteins. When a certain checkpoint,

the restriction point, in the G1 phase is passed, this leads to a series of specific steps
that end up in cell division. At this point, the cell checks whether it has achieved a
sufficient size and the external conditions are suitable for reproduction. The control
systemensures that a newphase of the cycle is only entered if the preceding phase has
been finished successfully. For instance, to enter a newM phase, it has to be assured
that DNA replication during S phase has correctly been brought to an end. Similarly,
entering in S phase requires a preceding mitosis.
Passage through the eukaryotic cell cycle is strictly regulated by the periodic

synthesis and destruction of cyclins that bind and activate cyclin-dependent kinases
(CDKs). The term �kinase� expresses that their function is phosphorylation of

Interphase

M-phase

G

M

S

G2

1

DNA replication finished? 

Restriction point

-control2G

control
Metaphase

Mitosis

finished? 

Figure 3.23 The cell cycle is divided into the interphase, which is
the period between two subsequent cell divisions, and the M
phase, during which one cell separates into two. Major control
points of the cell cycle are indicated by arrows. More details are
given in the text.
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proteins with controlling functions. A contrary function is carried out by a
�phosphatase.� Its function is to dephosphorylate a previously phosphorylated
protein and by this toggle its activity. Cyclin-dependent kinase inhibitors (CKI) also
play important roles in cell cycle control by coordinating internal and external signals
and impeding proliferation at several key checkpoints.
The general scheme of the cell cycle is conserved from yeast to mammals. The

levels of cyclins rise and fall during the stages of the cell cycle. The levels of CDKs
appear to remain constant during cell cycle, but the individual molecules are either
unbound or bound to cyclins. In budding yeast, one CDK (Cdc28) and nine different
cyclins (Cln1–Cln3, Clb1–Clb6) that seem to be at least partially redundant are found.
In contrast,mammals employ a variety of different cyclins andCDKs.Cyclins include
a G1 cyclin (cyclin D), S phase cyclins (A and E), and mitotic cyclins (A and B).
Mammals have nine different CDKs (referred to as CDK1-9) that are important in
different phases of the cell cycle. The anaphase-promoting complex (APC) triggers
the events leading to destruction of the cohesions, thus allowing the sister chromatids
to separate and degrades the mitotic cyclins.

3.3.1
Steps in the Cycle

Let us take a course through the mammalian cell cycle starting in G1 phase. As the
level of G1 cyclins rises, they bind to their CDKs and signal the cell to prepare the
chromosomes for replication.When the level of S phase promoting factor (SPF) rises,
which includes cyclin A bound to CDK2, it enters the nucleus and prepares the cell to
duplicate its DNA (and its centrosomes). As DNA replication continues, cyclin E is
destroyed, and the level of mitotic cyclins begins to increase (in G2). The M phase-
promoting factor (the complex of mitotic cyclins with the M-phase CDK) initiates
(i) assembly of the mitotic spindle, (ii) breakdown of the nuclear envelope, and
(iii) condensation of the chromosomes. These events take the cell to metaphase of
mitosis. At this point, theM phase-promoting factor activates the APC, which allows
the sister chromatids at the metaphase plate to separate and move to the poles
(anaphase), thereby completingmitosis. APCdestroys themitotic cyclins by coupling
them to ubiquitin, which targets them for destruction by proteasomes. APC turns on
the synthesis of G1 cyclin for the next turn of the cycle and it degrades geminin, a
protein that has kept the freshly synthesizedDNA in S phase frombeing re-replicated
before mitosis.
A number of checkpoints ensure that all processes connected with cell cycle

progression, DNAdoubling and separation, and cell division occur correctly. At these
checkpoints, the cell cycle can be aborted or arrested. They involve checks on
completion of S phase, on DNA damage, and on failure of spindle behavior. If the
damage is irreparable, apoptosis is triggered. An important checkpoint in G1 has
been identified in both yeast andmammalian cells. Referred to as �Start� in yeast and
as �restriction point� in mammalian cells, this is the point at which the cell becomes
committed to DNA replication and completing a cell cycle [38–41]. All the check-
points require the services of complexes of proteins.Mutations in the genes encoding
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some of these proteins have been associatedwith cancer. These genes are regarded as
oncogenes. Failures in checkpoints permit the cell to continue dividing despite
damage to its integrity. Understanding how the proteins interact to regulate the cell
cycle has become increasingly important to researchers and clinicians when it was
discovered that many of the genes that encode cell cycle regulatory activities are
targets for alterations that underlie the development of cancer. Several therapeutic
agents, such as DNA-damaging drugs, microtubule inhibitors, antimetabolites, and
topoisomerase inhibitors, take advantage of this disruption in normal cell cycle
regulation to target checkpoint controls and ultimately induce growth arrest or
apoptosis of neoplastic cells.
For the presentation of modeling approaches, we will focus on the yeast cell cycle

since intensive experimental and computational studies have been carried out using
different types of yeast asmodel organisms.Mathematicalmodels of the cell cycle can
be used to tackle, for example, the following relevant problems:

. The cell seems tomonitor the volume ratio of nucleus and cytoplasm and to trigger
cell division at a characteristic ratio. During oogenesis, this ratio is abnormally
small (the cells accumulate maternal cytoplasm), while after fertilization cells
divide without cell growth. How is the dependence on the ratio regulated?

. Cancer cells have a failure in cell cycle regulation. Which proteins or protein
complexes are essential for checkpoint examination?

. What causes the oscillatory behavior of the compounds involved in the cell cycle?

3.3.2
Minimal Cascade Model of a Mitotic Oscillator

One of the first genes to be identified as being an important regulator of the cell cycle
in yeast was cdc2/cdc28 [42], where cdc2 refers to fission yeast and cdc28 to budding
yeast. Activation of the cdc2/cdc28 kinase requires association with a regulatory
subunit referred to as a cyclin.
Aminimalmodel for themitotic oscillator involving a cyclin and theCdc2kinasehas

been presented by Goldbeter [43]. It covers the cascade of posttranslational modifica-
tions thatmodulate the activity of Cdc2 kinase during cell cycle. In the first cycle of the
bicyclic cascade model, the cyclin promotes the activation of the Cdc2 kinase by
reversibledephosphorylation,andin thesecondcycle, theCdc2kinaseactivatesacyclin
protease by reversible phosphorylation. Themodelwas used to test the hypothesis that
cell cycle oscillations may arise from a negative feedback loop, i.e., the cyclin activates
the Cdc2 kinase, while the Cdc2 kinase triggers the degradation of the cyclin.
The minimal cascade model is represented in Figure 3.24. It involves only two

main actors, cyclin and CDK. Cyclin is synthesized at constant rate, vi, and triggers
the transformation of inactive (Mþ ) into active (M) Cdc2 kinase by enhancing the
rate of a phosphatase, v1. A kinase with rate v2 reverts this modification. In the lower
cycle, the Cdc2 kinase phosphorylates a protease (v3) shifting it from the inactive
(Xþ ) to the active (X) form. The activation of the cyclin protease is reverted by a
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further phosphatase with rate v4. The dynamics is governed by the following ODE
system:

dC
dt
¼ vi�vd X �C

Kmd þC
�kdC

dM
dt
¼ Vm1 � ð1�MÞ

Km1þð1�MÞ�
Vm2 �M
Km2þM

dX
dt
¼ Vm3 � ð1�XÞ

Km3þð1�XÞ�
Vm4 �X
Km4þX

;

ð3:32Þ

where C denotes the cyclin concentration; M and X represent the fractional con-
centrations of active Cdc2 kinase and active cyclin protease, while (1�M) and (1�X)
are the fractions of inactive kinase and phosphatase, respectively. Km values are
Michaelis constants. Vm1¼V1C/(Kmc þ C) and Vm3¼V3�M are effective maximal
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Figure 3.24 Goldbeter�s minimal model of the
mitotic oscillator. (a) Illustration of the model
comprising cyclin production and degradation,
phosphorylation and dephosphorylation of Cdc2
kinase, and phosphorylation and
dephosphorylation of the cyclin protease (see
text). (b) Threshold-type dependence of the
fractional concentration of active Cdc2 kinase on
the cyclin concentration. (c) Time courses of
cyclin (C), active Cdc2 kinase (M), and active

cyclin protease (X) exhibiting oscillations
according to Equation system in Eq. (3.1).
(d) Limit cycle behavior, represented for the
variables C andM. Parameter values: Kmi¼ 0.05
(i¼ 1, . . ., 4), Kmc¼ 0.5, kd¼ 0.01, vi¼ 0.025,
vd¼ 0.25, Vm1¼ 3, Vm2¼ 1.5, Vm3¼ 1,
Vm4¼ 0.5. Initial conditions in (b) are C(0)¼
M(0)¼ X(0)¼ 0.01, and in (c) are X(0)¼ 0.01.
Units: mM and min�1.
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rates. Note that the differential equations for the changes of M and X are modeled
with the so-called Goldbeter–Koshland switch.
This model involves only Michaelis–Menten type kinetics, but no form of

positive cooperativity. It can be used to test whether oscillations can arise solely
as a result of the negative feedback provided by the Cdc2-induced cyclin degrada-
tion and of the threshold and time delay involved in the cascade. The time delay is
implemented by considering posttranslational modifications (phosphorylation/
dephosphorylation cycles v1/v2 and v3/v4). For certain parameters, they lead to a
threshold in the dependence of steady-state values for M on C and for X on M
(Figure 3.24(b)). Provided that this threshold exists, the evolution of the bicyclic
cascade proceeds in a periodic manner (Figure 3.24(c)). Starting from low initial
cyclin concentration, this value accumulates at constant rate, while M and X stay
low. As soon as C crosses the activation threshold, M rises. If M crosses the
threshold, X starts to increase sharply. X in turn accelerates cyclin degradation and
consequently, C, M, and X drop rapidly. The resulting oscillations are of the limit
cycle type. The respective limit cycle is shown in phase plane representation in
Figure 3.24(d).

3.3.3
Models of Budding Yeast Cell Cycle

Tyson, Novak, and colleagues have developed a series of models describing the cell
cycle of budding yeast in very detail [45–48]. These comprehensive models employ a
set of assumptions that are summarized in the following.
The cell cycle is an alternating sequence of the transition from G1 phase to

S/M phase, called �Start� (in mammalian cells, it is called �restriction point�),
and the transition from S/M to G1, called �Finish.� An overview is given in
Figure 3.25.
The CDK (Cdc28) forms complexes with the cyclins Cln1 to Cln3 andClb1 to Clb6,

and these complexes control the major cell cycle events in budding yeast cells. The
complexes Cln1-2/Cdc28 control budding, the complex Cln3/Cdc28 governs the
executing of the checkpoint �Start,� Clb5-6/Cdc28 ensures timely DNA replication,
Clb3-4/Cdc28 assists DNA replication and spindle formation, and Clb1-2/Cdc28 is
necessary for completion of mitosis.
The cyclin–CDK complexes are in turn regulated by synthesis and degradation of

cyclins and by the Clb-dependent kinase inhibitor (CKI) Sic1. The expression of the
gene for Cln2 is controlled by the transcription factor SBF, the expression of the gene
for Clb5 by the transcription factor MBF. Both the transcription factors are regulated
by CDKs. All cyclins are degraded by proteasomes following ubiquitination. APC is
one of the complexes triggering ubiquitination of cyclins.
For the implementation of these processes in amathematical model, the following

points are important. Activation of cyclins and CDKs occurs in principle by the
negative feedback loop presented in Goldbeter�s minimal model (see Figure 3.24).
Furthermore, the cells exhibit exponential growth. For the dynamics of the cell, mass
M holds dM/dt¼mM. At the instance of cell division,M is replaced byM/2. In some
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cases, uneven division is considered. Cell growth implies adaptation of the negative
feedback model to growing cells.
The transitions �Start� and �Finish� characterize thewild-type cell cycle. At �Start,�

the transcription factor SBF is turned on and the levels of the cyclins Cln2 and Clb5
increase. They form complexes with Cdc28. The boost in Cln2/Cdc28 has threemain
consequences: it initiates bud formation, it phosphorylates the CKI Sic1 promoting
its disappearance, and it inactivates Hct1, which in conjunction with APC was
responsible for Clb2 degradation inG1 phase. Hence, DNA synthesis takes place and
the bud emerges. Subsequently, the level of Clb2 increases and the spindle starts to
form. Clb2/Cdc28 inactivates SBF and Cln2 decreases. Inactivation of MBF causes
Clb5 to decrease. Clb2/Cdc28 induces progression throughmitosis. Cdc20 andHct1,
which target proteins to APC for ubiquitination, regulate the metaphase–anaphase
transition. Cdc20 has several tasks in the anaphase. Furthermore, it activates Hct,

Figure 3.25 Schematic representation of the
yeast cell cycle (inspired by Fall et al. [44]). The
outer ring represents the cellular events.
Beginning with cell division, it follows the G1
phase. The cells possess a single set of
chromosomes (shown as one black line). At
�Start,� the cell goes into the S phase and
replicates the DNA (two black lines). The sister
chromatids are initially kept together by proteins.
DuringMphase, they are aligned, attached to the
spindle body, and segregated to different parts of
the cell. The cycle closes with formation of two

new daughter cells. The inner part represents
main molecular events driving the cell cycle
comprising (1) protein production and
degradation, (2) phosphorylation and
dephosphorylation, and (3) complex formation
and disintegration. For the sake of clarity, CDK
Cdc28 is not shown. The �Start� is initiated by
activation of CDK by cyclins Cln2 and Clb5. The
CDK activity is responsible for progression
through S andMphase. At Finish, the proteolytic
activity coordinated by APC destroys the cyclins
and renders thereby the CDK inactive.

118j 3 Specific Biochemical Systems



promoting degradation of Clb2, and it activates the transcription factor of Sic1. Thus,
at �Finish,� Clb2 is destroyed and Sic1 reappears.
The dynamics of some key players in cell cycle according to the model given in

Chen et al. [47] is shown in Figure 3.26 for two successive cycles. At �Start,� Cln2 and
Clb5 levels rise and Sic1 is degraded, while at �Finish,� Clb2 vanishes and Sic1 is
newly produced.

3.3.4
Modeling Nucleo/Cytoplasmatic Compartmentalization

Compartmentalization is a major characteristic of eukaryotic cells. The partitioning
of a cell bymembranes results in a separation of functional units and in the formation
of reaction spaces thatmight differ significantly in theirmolecular composition. This
is due to a restricted permeability of the membranes and the controlled shuttling of
molecules (e.g., mRNAs, proteins, protein-complexes) between compartments, e.g.,
between the cytosol and the nucleus. This compartmentalization has also regulatory
aspects, e.g., for the cell cycle.
Barberis et al. [49] have set up a model of G1/S transition of the budding yeast cell

cycle that takes into account compartmentalization. The structure of the model is
displayed in Figure 3.27. The model is composed of two compartments – the
cytoplasm and the nucleus. The partitioning allows us to consider differences in
the concentrations of samemolecule species that are in different compartments. All
proteins of the model have synthesis and degradation reactions. Protein synthesis
takes place in the cytoplasm. Since the expression of the cyclins Cln1,2 and Clb5,6 is
regulated by transcription factors of the mode (SBF, MBF), they are explicitly
modeled by transcription events taking place in the nucleus, a transfer of the
respective mRNAs into the cytoplasm, and their subsequent translation. Cln3 is
themost upstreamcyclin in the yeast cell cycle progression. In growing cells, theCln3
protein enters the nucleus and forms a binary complex with Cdk1 (Cdk1–Cln3).
Active nuclear Cdk1–Cln3 activates the transcription factors SBF and MBF. This

Figure 3.26 Temporal behavior of some key players during two
successive rounds of yeast cell cycle. The dotted line indicates the
cell mass that halves after every cell division. The levels of Cln2,
Clb2total, Clb5total, and Sic1total are simulated according to the
model presented by Chen et al. [47].
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happens indirectly by Cdk1–Cln3 mediated phosphorylation of Whi5 and its subse-
quent dissociation fromSBFandMBF. The activation of SBFandMBFcommits a cell
to DNA replication and budding. This happens due to SBF-mediated transcription of
Cln1,2. Similarly, the transcription factor MBF activates Clb5,6 transcription. This
activation cascade is modulated by the Cdk inhibitor protein Far1. Far1 is largely
enriched in newborn cells and forms a ternary complex with Cdk1–Cln3. Given
the presence of a substantial amount of Far1 in the cell, Far1 traps Cdk1–Cln3 in the
inactive form. Growth-dependent accumulation of Cln3 allows it to overcome the
threshold that is set by Far1. Furthermore, in the presence of Cdk1–Cln1,2, Far1 can
be phosphorylated and hence primed for degradation. The degradation of Far1 yields
in a substantial amount of active Cdk1–Cln3.
The newly expressed proteins Cln1 and Cln2 form a cytoplasmatic complex with

Cdk1 that promotes the biochemical reactions relevant for budding. Moreover, Clb5
and Clb6 bind to Cdk1 andmigrate into the nucleus where the Cdk1–Clb5,6 complex
initiates DNA replication. Like Far1 is an inhibitor of Cdk1–Cln3 activity, Sic1 is an
inhibitor of Cdk1–Clb5,6 activity. But in the same way as Far1 can be targeted for
degradation by phosphorylation, also Sic1 can be phosphorylated by Cdk1–Cln1,2
and subsequently degraded.
The model defines two thresholds that subsequently have being overcome during

the upstream events of �Start�: (i) Cln3–Cdk1 has a threshold that is set by Far1 and

Figure 3.27 Processes regulating the G1/S transition in budding
yeast (this figure was kindly provided by M. Barberis [49]).
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(ii) Cdk1–Clb5,6 has a threshold that is set by Sic1. The simulation results depicted in
Figure 3.28 show these thresholds.
Compartmentalization as described by this model addresses the following regu-

latory issues:

1. Gene expression involves the migration of the mRNA from the nucleus to the
cytosol, where proteins are synthesized.

2. Both import and export of proteins to or from the nucleus can be regulated
independently.

3. Controlled partitioning affects binding equilibria by altering the actual concen-
tration of a given protein available for binding to a given interactor within a
subcellular compartment.

3.4
Spatial Models

Summary

Cells and organisms show complex spatial structures, which are vital for the
processes of life. Biochemical reaction–diffusion systems can establish, maintain,
and adapt spatial structures in a self-organized and robust manner. The body plan
of animals, for instance, is shaped during embryonic development by spatial-
temporal profiles of morphogen levels. Dynamic instabilities in such systems can
give rise to spontaneous pattern formation. The spatiotemporal dynamics of
substance concentrations can be modeled in different mathematical frameworks,
including compartment models, reaction–diffusion equations, and stochastic
simulations.

Figure 3.28 Simulation results of the G1/S transition model.
(a) Nuclear Cdk1-Cln3-Far1 complex reaches its maximal
concentration after 30 min and becomes degraded upon
overcoming Cln3/Far1 threshold (T1). (b) The half-maximal
concentration of nuclear Cdk1-Clb5,6 is reached at around 80min,
thereby setting the Clb5,6/Sic1 threshold (T2) (this figure was
kindly provided by Barberis [49]).
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Cells, tissues, and organisms showcomplex spatial structures, andmanybiological
processes involve spatiotemporal dynamics. Prominent examples are calcium waves
within cells, neural activity in the brain, patterning during embryonic development,
or the invasion of tissues by cancer cells. Such spatiotemporal processes can be
modeled in different mathematical frameworks, including compartment and reac-
tion–diffusion models [50]. Spatial simulation can increase the numerical cost quite
drastically, but characteristic dynamic behavior like waves or pattern formation can
already be studied in relatively simple models with one or two substances.
Spatial structures are vital for many processes in living cells. Organelles can

contain different compositions of enzymes and provide suitable environments for
different biochemical processes (e.g., presence of hydrolases and low pH in lyso-
somes); membranes allow to establish gradients of concentrations or chemical
potential, e.g., proton gradients that provide an energy storage in bacteria and
mitochondria. The localization of molecules also plays a role in signaling: in the
Jak–Stat pathway, for instance, active Stat proteins accumulate in the nucleus to
induce transcriptional changes. Besides the compartments, there is also structure on
the microscopic scale: scaffold proteins can hold together protein complexes. By
localizing several functions in close vicinity, they create a �criticalmass� of enzymatic
activity. In channeling, for instance, intermediates are directly passed from enzyme
to enzyme, which increases the efficiency of enzymes.

3.4.1
Types of Spatial Models

How can spatial substance distributions be described in models? If molecules move
freely and independently and if diffusion is much faster than chemical reactions,
inhomogeneities will rapidly disappear, and substances may be described by their
concentrations averaged over the cell. On the other hand, if molecules are not
distributed homogeneously, e.g., because membranes slow down the diffusion of
molecules, then spatial location and structure need to be modeled.

3.4.1.1 Compartment Models and Partial Differential Equations
One possibility is to describe substances by their concentrations in different
compartments, e.g., organelles in the cell. Compartments are also used in pharmaco-
kinetics, to model the distribution and degradation of substances in different
organs [51, 52]. Compartment models are based on the assumption of fast diffusion
within each compartment; if biological compartments resemble each other (e.g., the
mitochondria in a cell) and rapidmixing between themwould notmake a difference,
they can be treated as a single, effective compartment.
If diffusion is slow within compartments, it will not wear away the spatial

inhomogeneities in substance concentrations: on the contrary, coupling between
diffusion and chemical reactions may generate dynamic patterns (e.g., waves) out
of homogeneous substance distributions. The dynamics of such patterns can be
described by reaction–diffusion systems, which describe substance concentrations in
continuous space and time. The partial differential equations can be solved
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numerically by splitting the space in question into finite elements, small volume
elements which formally resemble compartments, but are chosen according to
numerical requirements.

3.4.1.2 Stochastic Models
Partial differential equationmodels assume that concentrations are smooth functions
in space – which only holds on a spatial scale much larger than the average distance
between molecules. If a substance is present in small amounts, the behavior of
individual molecules – thermalmovement and chemical reactions – can be simulated
by stochastic models. A stochastic simulation may track each individual particle,
describing its diffusion by a random walk. If molecules are in close vicinity, they may
participate in a chemical reactions and be transformed into product molecules. The
numerical effort for such simulations is high, especially ifmanyparticles aremodeled.
Instead of tracking the histories of individual particles, we can also split the cell into
subvolumes and simulate the particle numbers within subvolumes by a random
process describing reaction and diffusion (see Section 7.1.3 and Chapter 14).

3.4.1.3 Cellular Automata
In cellular automatamodels [53], space is represented by a discrete array of nodes, so-
called cells. Each cell can show different discrete states, which are updated in discrete
time steps; the new state can be chosen deterministically or stochastically and
depends typically on the current states of the cell and its neighbors. A prominent
example of a cellular automaton is Conway�s game of life [54]. In this model, cells
form a square lattice and can assume two different states, �dead� (or 0) and �live�
(or 1). The states are updated synchronously according to the following rules: (i) a live
cell with fewer than 2 or more than 3 neighbors dies; a live cell with 2 or 3 neighbors
remains alive. (ii) If a dead cell has exactly three neighbors, it comes to life, otherwise
it remains dead. These simple rules give rise to a surprisingly rich dynamic behavior
(see exercise 4).More complicatedmodels can beused to simulate the proliferation of
cells and organisms in space.

3.4.2
Compartment Models

In compartment models, we assume that concentrations are homogeneous within
each compartment. Transport between compartments –, e.g., diffusion across mem-
branes –, is modeled by transport reactions. Passive exchange through membranes
or pores, for instance, may be described as diffusion with a rate

v�ðs1; s2Þ ¼ APðs1�s2Þ; ð3:33Þ
where the permeability P (in m � s�1) depends on the physicochemical properties of
membrane, channels, andmolecules, andAdenotes themembrane area; the indices 1
and 2 refer to the compartments. Active transport by transporter proteins may be
modeled by a saturable rate law, for instance, irreversible Michaelis–Menten kinetics.
Importantly, transport rates are measured as amounts per time (in mol � s�1), but for
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physical reasons, their values depend on compound concentrations in mM (e.g., the
difference s1� s2 in Eq. (3.33)).
So, although compartment models are not very different from usual kinetic

models, we need to pay some attention to the correct conversion between substance
amounts, concentrations, and compartment volumes. It is practical to start with the
amounts ai (where the subscript i indicates a substance located in a compartment).
With the reaction velocities v� (in mol � s�1), we obtain the rate equation

dai
dt
¼

X
l

nil v
�
l ðsÞ; ð3:34Þ

where the nil are the stoichiometric coefficients. Each amount ai is defined in a
compartment with index k(i) and a volume Vk(i) (in m3). After introducing the
concentrations si¼ ai/Vk(i), we can rewrite the time derivative in Eq. (3.34) as

dai
dt
¼ d

dt
ðVkðiÞsiÞ ¼ VkðiÞ

dsi
dt
þ dVkðiÞ

dt
si: ð3:35Þ

By combining Eqs. (3.34) and (3.35), we obtain the rate equation for concentra-
tions

dsi
dt
¼

X
l

nil
VkðiÞ

v�l ðsÞ�
dVkðiÞ=dt
VkðiÞ

si: ð3:36Þ

It shows that concentration changes can be caused by chemical reactions (first
term) and volume changes (second term). If all compartments in Eq. (3.36) have the
same time-independent volume, we can replace v�l =VkðiÞ by the usual reaction velocity
vl in mM � s�1; the second term vanishes, so we obtain the usual form of kinetic
models. But we can also consider the transport of a substance between two
compartments (1 and 2) of different volume. If the volume sizes are constant in
time, the second term vanishes and we obtain, for this reaction alone,

V1
ds1
dt
¼ �V2

ds2
dt

: ð3:37Þ

The minus sign stems from the stoichiometric coefficients. The volumes play an
important role in transport between cells and the external medium: intra- and
extracellular concentration changes are converted to each other by the volume ratio
Vcell/Vext, where Vcell is the volume of a single cell and Vext denotes the extracellular
volume divided by the number of cells.
The second term in Eq. (3.36) describes the effect of temporal volume changes:

substances in growing cells are diluted, so their concentration will decrease even if
they are not consumed by chemical reactions. If a cell population grows at a rate m(t),
the total cell volume V increases according to

dV
dt
¼ mðtÞVðtÞ; ð3:38Þ

so the prefactor in the second term in Eq. (3.36) is just the growth rate m(t). Dilution of
molecules in a growing cell population formally resembles linear degradation,with the
cell growth rate m appearing as an effective degradation constant.
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3.4.3
Reaction–Diffusion Systems

3.4.3.1 The Diffusion Equation
The diffusion equation describes the space- and time-dependent concentration s(r, t)
of a diffusing substance, where r is a position in space, and t is a moment in time. In
spatial models, positions are generally represented by three-dimensional vectors
r¼ (x, y, z)T, but in the following, we will sometimes consider a single space
dimension only. This simplification is justified if wemodel a long, thin compartment
or if we assume homogeneity along two space directions. The flow of a substance
can be described by a vectorial flow field j(r, t); we can interpret the flow as a product
j(r, t)¼ s(r, t) w(r, t), where w(r, t) is the locally averaged particle velocity. If a substance
is conserved (no production or degradation by chemical reactions), its concentration
obeys the continuity equation

qsðr; tÞ
qt

¼ �r � jðr; tÞ: ð3:39Þ

Fick�s law states that a small concentration gradient in a homogeneous, isotropic
medium will evoke a flow

jðr; tÞ ¼ �Drsðr; tÞ; ð3:40Þ
with a diffusion constant D. By inserting Eq. (3.40) into the continuity equation (3.39),
we obtain the diffusion equation

qsðr; tÞ
qt

¼ Dr2sðr; tÞ; ð3:41Þ

with the Laplace operator

r2s ¼ q2s
qx2
þ q2s

qy2
þ q2s

qz2
: ð3:42Þ

In one space dimension, the Laplace operator simply readsr2s(r, t)¼ q2s/qr2. The
diffusion equation (3.41) for concentrations corresponds to the Fokker–Planck
equation for Brownian random motion of individual particles (see Chapter 14).
To solve it in a region in space, weneed to specify initial conditions (a concentration

field s(r, 0) at time t¼ 0) andboundary conditions for all points r0 on the boundary. It is
common to fix concentrations s(r0, t) on the boundary (aDirichlet boundary condition)
or to assume that the boundary is impermeable, i.e., the flow orthogonal to the
boundary vanishes. As the flow points along the concentration gradient, this is
an example of a von Neumann boundary condition, which in general sets the values of
rs(r0)�n(r0), where n is a unit vector orthogonal to the surface. In one space
dimension, an impermeable boundary implies that qsðr; tÞ=qrjr¼r0 ¼ 0, so the slope
of the concentration is always zero at the boundary. The diffusion equation, together
with proper initial and boundary conditions, determines the time-dependent con-
centration field s(r, t) at times t� 0.
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3.4.3.2 Solutions of the Diffusion Equation
Diffusion tends to remove spatial heterogeneity: local concentration maxima (with
negative curvaturer2s) will shrink and local minima are filled. This is illustrated by
some special solutions of the diffusion equation in one space dimension.

1. Stationary concentration profiles in one space dimension have vanishing curva-
ture. If concentrations at the boundaries r¼ 0 and r¼ L are fixed, one obtains a
linear stationary profile sst(r) in which substance flows down the concentration
gradient. For impermeable boundaries, the stationary solution is a homogeneous,
constant profile sst(r)¼ const corresponding to a thermodynamic equilibrium.

2. If a substance amount a is initially concentrated in the point r¼ 0 and if we impose
the boundary condition s(r, t) ! 0 for r ! �1, diffusion will lead to a Gaussian-
shaped concentration profile (see Figure 3.29(a))

sðr; tÞ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð2DtÞp e

� r2
2ð2DtÞ: ð3:43Þ

The width
ffiffiffiffiffiffiffiffi
2Dt
p

increases with the square root of diffusion constant D and
time t.

3. Now we consider a finite region 0� r� L with impermeable boundaries, i.e.,
qs/qr¼ 0 at both r¼ 0 and r¼ L and choose, as initial condition, a cosine pattern,
i.e. an eigenmode of the diffusion operator. Under diffusion, the pattern will keep
its shape, but the amplitude decreases exponentially (Figure 3.29(b)):

sðr; tÞ ¼ s0 e
�lðkÞtcosðk rÞ: ð3:44Þ

To ensure positive concentration values, a base line concentration can be
added.Due to the boundary conditions, the possiblewave numbers k are restricted
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Figure 3.29 Diffusion tends to blur spatial concentration
patterns. (a) A localized substance amount leads to a Gaussian-
like cloud of increasing width. Parameters a¼ 2, D¼ 1. Time,
space, and concentration in arbitrary units. (b) An initial cosine
wave pattern keeps its shape, but its amplitude decreases
exponentially in time. Parameters s0¼ 1, D¼ 1, k¼ 2p/(5/2),
base line concentration 1.
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to values k¼ np/L with integer n. The time constant l is given by the dispersion
relation l(k)¼�Dk2, so narrow-spaced cosine patterns (with largewave numbers
k) are smoothed out faster than broad patterns.

As the diffusion equation is linear, general solutions can be obtained by convolu-
tion integrals or linear combinations of the profiles (3.43) or (3.44).

3.4.3.3 Reaction–Diffusion Equation
A reaction–diffusion system consists of several substances that diffuse and
participate in chemical reactions. By combining a kinetic model for the chemical
reactions with the diffusion equation (3.41), we obtain a reaction–diffusion
equation

qsiðr; tÞ
qt

¼
X
l

nil vlðsðr; tÞÞþDir2siðr; tÞ ð3:45Þ

for the concentrations si. The first term represents local chemical reactions, while
the second term describes diffusion with substance-specific diffusion constants
Di. As the rate laws vl(s) are usually nonlinear, most reaction–diffusion models can
only be solved numerically, e.g., by finite-element methods. Reaction–diffusion
equations can show various kinds of dynamic behavior including pattern forma-
tion, traveling and spiraling waves, or chaos, some of which is also observed in
biological systems (Figure 3.30). For instance, traveling waves arising from

Figure 3.30 Patterns on sea shells arising from a
reaction–diffusion system. (a) Color patterns on
the shell of Oliva porphyria are formed as more
material is added to the growingedge of the shell,
so the vertical direction in the picture can be
interpreted as a time axis. The patterns are
preformed by a chemical reaction–diffusion
system: in this case traveling waves lead to

diagonal lines. (b) The patterns can be
simulated by an activator-inhibitor system (black
and red) with an additional global signaling
substance (green) that counteracts the pairwise
annihilation of waves [55, 56]. The vertical axis
represents time from top to bottom (Courtesy of
H. Meinhardt).
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simple reaction–diffusion systems have been used to model the patterns on sea
shells [55, 56].

3.4.4
Pattern Formation in Tissue Development

The body plan of multicellular organisms is established in embryonic development
by coordinated growth and differentiation of cells. Organisms can develop very
specific shapes in a robust manner, which we can see from the similarity between
twins and the symmetry of our bodies.
The development process is organized by spatial patterns ofmorphogens, which act

as a coordinate system in thedeveloping tissue. If amorphogen level shows a gradient
along the anterior–posterior axis of the embryo, cells can sense their positions on this
axis and differentiate accordingly [57]. Morphogen fields follow a spatiotemporal
dynamics, which arises from its interactions with the growing tissue and is implicitly
determined by the way cells sense and produce the morphogens.
Comparable forms of cell communication and collective dynamics also appear

in bacteria (in quorum sensing) or in colonies of the social amoeba Dictyostelium
discoideum, which can turn temporarily into a multicellular organism. Another
example is the hydra, a multicellular animal that can regrow its main organs, foot
and head, after it is cut into halves, and which can even re-associate from
individual cells. The spontaneous development of a new body axis in the hydra
by biochemical pattern formation has been described qualitatively by mathemati-
cal models [58, 59].
The fly Drosophila melanogaster is a prominent model organism for embryonic

development: its anterior–posterior body axis is established in early oocyte stage by
a gradient of a morphogen protein called Bicoid. Bicoid is produced from mRNA
that is attached to microtubules at the anterior end of the unfertilized egg; it then
forms a gradient that marks the anterior part of the embryo and serves as a
reference for further patterning processes (see Figure 3.31(a)). To compute a
stationary Bicoid profile in a simple model, we assume a steady-state balance of
production, diffusion, and linear degradation. The concentration s(r,t) in one
dimension (pointing along the anterior–posterior axis) can be described by the
reaction–diffusion equation

qsðr; tÞ
qt

¼ Dr2sðr; tÞ�ksðr; tÞ; ð3:46Þ

with diffusion constant D and degradation constant k. The stationary profile sst(r)
has to satisfy the steady-state condition

0 ¼ Dr2sstðrÞ�ksstðrÞ; ð3:47Þ

which can be solved by a sum of exponential profiles

sstðrÞ ¼ a1e
�r=L0 þ a2e

r=L0 ; ð3:48Þ
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with the characteristic degradation length L0 ¼
ffiffiffiffiffiffiffiffiffi
D=k

p
. The coefficients a1 and a2

need to be chosen according to the boundary conditions. We describe Bicoid
production by fixing a constant concentration s(r¼ 0)¼ s0 at the anterior boundary
of the cell; s0 is proportional to the protein production rate and therefore to the
amount of mRNA. On the posterior end, Bicoid cannot leave the cell, so we set
dsst/dr|r¼L¼ 0. With these boundary conditions, the coefficients in Eq. (3.48) read

a1 ¼ b2s0
1þb2

a2 ¼ s0
1þb2

; ð3:49Þ

with the abbreviation b¼ exp(L/L0). If the characteristic length L0 is much shorter
than the length L of the embryo, we can also use the boundary condition
limr!1s

st(r)¼ 0 as an approximation. In this case, the second term in Eq. (3.48)
vanishes, and we obtain the exponential profile

sstðrÞ ¼ s0 e
�r=L 0 : ð3:50Þ

In an alternative model [62], Bicoid is assumed to catalyze its own degradation,
which leads to a steeper profile near the source; with a degradation rate ks2(r, t)
instead of ks(r, t) and boundary conditions as above, the steady-state profile reads (see
exercise 6)

sstðrÞ ¼ 6D=k�
rþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6D=ðks0Þ
p �2 : ð3:51Þ
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Figure 3.31 Spatial pattern of the morphogen
Bicoid. (a) Microscope image [60] showing
expression patterns of the genes even-skipped
(red), caudal (green), and bicoid (blue). From the
FlyEx database [61]. (b) Model results. Solid
curves show simulated profiles obtained from
models with linear degradation (black) or self-
enhanced degradation (blue) and parameters

D¼ 0.01, k¼ 0.02, s0¼ 1. The Bicoid
concentrations in both models coincide at r¼ 0
and r� 2.5 (dot). The broken curves show
profiles that would result from an increased
concentration s0¼ 2 at the anterior end. The
change of this boundary condition shifts profiles
to the right by a constant amount (shift sizes
marked by red lines).
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This pattern combines two properties that are favorable for reliable patterning [62].
The amounts of mRNA, and therefore morphogen production, may vary from
embryo to embryo: an increased production, for example, will shift the emerging
pattern to the right (see Figure 3.31(b)). This effect can only be suppressed by a steep
initial decrease around r¼ 0. However, in the exponential profile (3.50), a steep
decrease would automatically lead to small Bicoid levels along the embryo, which
could easily be distorted by noise. The profile implemented by Eq. (3.51), on the other
hand, combines a steep decrease near the source with relatively high levels along the
embryo. In Figure 3.31(b), for instance, both profiles show the same Bicoid level at
the center of the embryo, but model (3.51) shows a much smaller shift after
overexpression of Bicoid.

3.4.5
Spontaneous Pattern Formation

Some color patterns, e.g,. on the furs of zebras and leopards, are thought to arise
from a self-organized pattern formation. Even if the identity of the biological
morphogens and the biochemical interactions in these cases remain elusive, the
geometries of these patterns can be well reproduced by simple reaction–diffusion
models [63]. Figure 3.32 shows, as an example, the formation of spots in the
Gierer–Meinhardt model

qa
qt
¼ ra2

bð1þ ka2Þ�maaþDar2a

qb
qt
¼ ra2�mbbþDbr2b:

ð3:52Þ

with parameters r and k (for production), ma and mb (for degradation), andDa andDb

(for diffusion). The concentrations a and b correspond, respectively, to an activator
(which has a positive influence on both production terms) and an inhibitor (which

Figure 3.32 Stripe formation in the
Gierer–Meinhardt model. The pictures show
snapshots (activator concentration) from a
simulation at time points t¼ 50 (a), t¼ 200 (b),
t¼ 50 (c), t¼ 200 (d). A stripe pattern emerges

spontaneously from a noisy initial concentration
profile (uniform random values from the interval
[0.1, 1]. Parameters Da¼ 0.002, Db¼ 0.2, r¼ 1,
ma¼ 0.01, mb¼ 0.015, k¼ 0.1, discretization
Dx¼ 0.2, Dt¼ 1 (arbitrary units).
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inhibits production of the activator). Variants of this model with different parameter
sets can lead to spots, stripes, and gradients. The pattern in Figure 3.32 has a typical
length scale (distance between spots), which depends on the reaction and diffusion
parameters, but not on the size of the tissue. The exact shape is random and depends
on the initial random fluctuations.
In reaction–diffusion systems, spatial patterns can emerge spontaneously from an

almost homogeneous distribution – a paramount example of spontaneous symmetry
breaking. Similar patterns arise in clouds or sand ripples. Although the underlying
physical systems are completely different, their ability to form patterns relies on the
same general mechanism called Turing instability [64]. For spontaneous pattern
formation, the systemmust have a homogeneous steady state. This steady statemust
be stable against homogeneous concentration changes, but unstable against spatial
variation. Fluctuations of a certainfinitewavelengthmust be amplifiedmore strongly
than fluctuations of smaller or larger wavelength.
These conditions can be fulfilled in simple reaction–diffusion systems [58] with

two substances called �activator� and �inhibitor� as shown in Figure 3.33(a). If the
homogeneous steady state of the system is unstable against local fluctuations, even
smallest fluctuations will be amplified and lead to a stable pattern with separated
regions (typically spots or stripes) of high or low activator levels. Even if the full
nonlinear behavior of reaction–diffusion systemsmay be complicated, the necessary
conditions for pattern formation can be obtained from a linear stability analysis (see
web supplement). Pattern formation in activator–inhibitor systems requires that the
inhibitor diffuses faster than the activator, so whereas pure diffusion removes
patterns, diffusion is necessary for pattern formation in this case. Propagating waves
(as shown in Figure 3.30), in contrast, require that the inhibitor has a longer life-time
and that it diffuses more slowly than the activator.
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Figure 3.33 Activator–inhibitor system. (a) High
levels of A (the activator) locally increase both
concentrations, while B (the inhibitor) decreases
them. In a nonspatial model, this system is
assumed to have a stable steady state. (b) A
reaction-diffusion mechanism can amplify
existing local inhomogeneities: a local elevation

of A catalyzes its own further increase (1). In
addition, it increases the level of B (2), which
diffuses faster than A (3) and represses the level
of A in a distance (4). By the same mechanism,
the resulting valley will further increase the
original elevation and create another
concentration peak nearby.
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3.5
Apoptosis

Summary

Similarly as cells always divide, damaged or excess cells can be removed by a kind of
cell suicide called programmed cell death. Apoptosis, a well-studied form of pro-
grammed cell death, can be elicited by extracellular or intracellular signals. Both
extracellular signals of death receptors or intracellular signals, e.g., due to DNA
damage or oxidative stress activate a signaling cascade. Extracellular or intracellular
signals activate initiator caspases, which vice versa activate executioner caspases that
finally lead to the death of the cell. The activation of the apoptotic program is an
irreversible process – once the �point of no return� has been passed, the process
cannot be reverted. The mathematical modeling of the apoptotic signaling cascade
can be used for the identification of potential therapeutic targets. Furthermore, the
model can be used for the analysis of certain characteristics of the apoptotic signaling
cascade, such as bistability and irreversibility.

Multicellular organisms begin their life as a single cell that develops into a fully
formed individual. This developmental process is controlled by a precise execution of
the organism�s genetic program.Although it is obvious that developmental processes
require cell division and differentiation, it turned out that a specific and coordinated
cell death is essential, too. The crucial role of cell death usually continues into
adulthood. As well as our cells permanently proliferate, billions of cells die each day
by a suicide program that is precisely coordinated and known as programmed cell
death. Cells dying by apoptosis, the most common and best-understood form of
programmed cell death, undergo characteristic morphological changes. The cells
shrink, their cytoskeleton collapses, the nuclear envelope disassembles, the chroma-
tin breaks up into fragments, and finally, they form so-called apoptotic bodies, which
have a chemically altered surface and are usually rapidly engulfed by neighboring
cells or macrophages. In contrast to cells dying accidentally by necrosis, apoptosis
does not elicit an inflammatory response. Apoptosis plays an important role during
development; e.g., the removal of specific cells during embryogenesis helps to sculpt
the fingers of the hand, or during frog�s metamorphosis it is causative for the
degeneration of the tadpole�s tail. Moreover, apoptosis functions as a quality control,
eliminating abnormal or nonfunctional cells.

3.5.1
Molecular Biology of Apoptosis

Apoptosis depends on an intracellular proteolytic cascade mediated by caspases, a
family of proteases with a cystein at their active site, which cleave their target proteins
at specific aspartic acids. Caspases are synthesized in the cell as inactive precursors,
or procaspases, which then become activated by proteolytic cleavage. Caspases

132j 3 Specific Biochemical Systems



involved in apoptosis are classified as initiator caspases (caspases 2, 8, 9, 10) and
executioner caspases (caspases 3, 6, 7). Initiator caspases act at the start of the
proteolytic cascade and activate downstream executioner procaspases. Executioner
caspases conduct the cell death by, e.g., activating other executioner procaspases,
cleavage of nuclear lamins that results in the breakdown of the nuclear lamina,
cleavage of DNA-endonuclease inhibitors that results in the fragmentation of the
genomic DNA, and the cleavage of components of the cytoskeleton and cell–cell
adhesion. Initiator caspases can be activated either by intracellular or extracellular
signals. Figure 3.34 gives an overview of the apoptotic signaling cascade. The
extracellular or extrinsic apoptotic pathway is mediated by so-called death receptors
and can be induced, e.g., by immune cells that display an appropriate ligand able to

Figure 3.34 Molecular processes of the
apoptotic signaling cascade. Apoptosis can be
activated via extrinsic or intrinsic signals. The
extrinsic apoptotic pathway is initiated by ligands
binding to the death receptor, the formation of
the DISC complex and the subsequent activation
of the initiator caspase-8 or caspase-10.
Intracellular signals, such as stress or DNA
damage, can lead to an aggregation of Bax or Bak
proteins on the surface of the mitochondrial
membrane and initiate the release of cytochrome
c from the mitochondrial intermembrane space

into the cytosol. Together with Apaf-1,
cytochrome c can form the apoptosome, which
can bind and activate caspase-9. Both, caspases
8 and 10 of the extrinsic pathway and caspase-9
of the intrinsic pathway can cleave and activate
executioner procaspases (caspases 3, 6, 7) that
subsequently mediate cell death. Intrinsic
apoptosis can also be activated by the extrinsic
pathway by the truncation of Bid and formation
of active tBid. tBid is an inhibitor of Bcl-2, which,
under normal condition, binds Bax or Bak and
inhibits their aggregation.
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bind to its respective death receptor. Death receptor ligands are members of the
tumor necrosis factor (TNF) protein family such as TNF-a, TRAIL, or the Fas ligand
(FasL). Death receptors belong to the TNF receptor family, which includes a receptor
for TNF itself and the Fas receptor (FasR). Binding of a ligand to a respective death
receptor induces in the target cell the formation of a complex termed DISC (death-
inducing signaling complex). DISC consists of the activated death receptor, the
protein FADD (Fas-associated death domain protein), and one of the initiator
procaspases (caspase-8 or caspase-10). This complex triggers the self-cleavage of
the procaspase and thereby the formation of the respective activated initiator caspase,
which in turn activates executioner caspases that finally lead to the progression of
apoptosis.
On the other hand, the intracellular or intrinsic apoptotic pathway can be initiated

by intracellular signals such as DNA damage or the lack of oxygen, nutrients, or
extracellular survival signals. Intracellular apoptotic signals can lead to the aggrega-
tion of the pro-apoptotic proteins Bax and Bak, which mediate the release of
cytochrome c and Smac from the mitochondrial intermembrane space into the
cytosol. Cytochrome c is a water-soluble protein that is usually involved in the
mitochondrial electron-transport chain. In the cytosol, cytochrome c binds a
procaspase-activating adaptor protein called Apaf1 (apoptotic protease activating
factor-1) and leads to the formation of a wheel-like heptamer called apoptosome.
The apoptosome recruits the initiator procaspase-9, which then gets activated
and subsequently leads to the downstream activation of the executioner procaspases.
Via a crosstalk between the extrinsic and the intrinsic pathway, an extracellular

apoptotic signal can be amplified. Activated initiator caspases of the extrinsic pathway
cleave the protein Bid. The truncated Bid protein, tBid, acts as a pro-apoptotic protein
that is able to inhibit antiapoptotic proteins, such as Bcl2 or Bcl-XL. Under non-
apoptotic conditions, these antiapoptotic proteins oppose the aggregation of Bax or
Bak and thereby suppress the onset of apoptosis.
Apoptosis cannot only be inhibited by antiapoptotic proteins belonging to the Bcl2-

like protein family, but also by proteins that specifically inhibit active caspases. These
proteins are called inhibitors of apoptosis (IAPs). One of the most potent IAP is the
X-linked inhibitor of apoptosis protein (XIAP), which is known to inhibit the initiator
caspase caspase-9 and the executioner caspases 3 and 7. The function of XIAP in turn
can be inhibited by interaction with Smac.
Another protein that has amajor effect on the regulation of apoptosis is the protein

p53 (sometimes also termed Trp53 in mice or TP53 in humans). Often, p53 is also
called a tumor suppressor gene, since it is able to cause cell cycle arrest or apoptosis. It
has been shown that several DNA-damaging agents, such as X-rays, ultraviolet
radiation, or certain drugs, increases the p53 protein level. p53 can hold the cell
cycle and provide the cell with time to repair the DNA damage before the cell cycle
proceeds. If theDNAdamage cannot be repaired, an increasing amount of p53 acting
as a transcription factor can lead to the expression of pro-apoptotic regulators of the
Bcl2-family, such as Bax, and initiate by this intrinsic apoptosis.
Once apoptosis is initialized, essential structures of the cell become destructed.

This implies that apoptosis should show an irreversible all-or-none behavior, since,
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e.g., already a partial destruction of the genomic DNA would introduce irreparable
damage to the cell. The existence of an all-or-none behavior, i.e., of a bistability,
implies a nonlinear behavior of the system.
Dysregulation of apoptosis is associatedwith various pathological conditions, such

as cancer and neurodegenerative disorders. Dysregulation of apoptosismight be due
to an overexpression or dysfunction of its regulatory proteins. For example, an
overexpression of XIAP that is inhibiting caspase-9 leads to a decrease of the amount
of pro-apoptotic proteins and thus shifts the balance between antiapoptotic and
pro-apototic proteins in favor of the former and would lead to a survival of cells that
are devoted to die. This can be a reason for the onset of cancer. On the other hand, an
overexpression of pro-apoptotic proteins or the dysfunction of antiapoptotic proteins
due to mutations could result in an unintended apoptosis leading to, e.g., neurode-
generative disorders such as Alzheimer�s disease or Parkinson�s disease.

3.5.2
Modeling of Apoptosis

Severalmathematicalmodels describing different parts and aspects of apoptosis have
been developed. A large-scale model of intrinsic and extrinsic apoptosis has been
proposed by Fussenegger et al. [65]. The model was used to investigate the impact of
the overexpression ormutation of several key components of the apoptosis signaling
cascade. Using the mathematical model, they analyzed the impact of different
combined therapies on simultaneous extrinsic- and intrinsic-induced apoptosis.
Table 3.5. shows predicted effects of such combined therapies. This table indicates
therapies that are expected to decrease the executioner caspase activation during
simultaneous extrinsic- and intrinsic-induced apoptosis. It turned out that no single
therapy (results in the diagonal of Table 3.5.), with the exception of IAPs over-
expression, is able to block executioner caspase activation. Some combinations of
overexpression/disruption ormutation also show an effect, but several combinations

Table 3.5 Predicted effects of combined therapies based on
simultaneous extrinsic- and intrinsic-induced apoptosisa.

Overexpression Disruption or
mutation

Bcl-2/Bcl-XL Bax/Bad/Bik FLIPs IAPs FADD P53

Bcl-2/Bcl-XL � � þ þ þ �
Bax/Bad/Bik � � � þ � �
FLIPs þ � � þ � þ
IAPs þ þ þ þ þ þ
FADD þ � � þ � þ
P53 � � � þ þ �
aEntries in the diagonal denote therapies with a single target; others are combinations of potential
therapies. A plus sign (þ ) denotes therapies with decreased activation of executioner caspase, and
the minus sign (�) denotes the opposite [65].
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do not, because they target only a single activation route. For example, the over-
expression of several antiapoptotic members of the Bcl-2 protein family does not
block receptor-mediated activation and thus apoptosis can proceed. Similarly, a
disruption or mutation of FADD does not block the stress-induced activation of
apoptosis via the intrinsic pathway.
Another model describing the extrinsic pathway of apoptosis was developed by

Eissing et al. [66]. The reaction schema of the model is depicted in Figure 3.35. The
model is described by a system of eight ordinary differential equations.

d½C8	
dt
¼ �v2�v9

d½C8�	
dt

¼ v2�v5ð�v11Þ
d½C3	
dt
¼ �v1�v10

d½C3�	
dt

¼ v1�v3�v6
d½IAP	
dt

¼ �v3�v4�v8
d½C3� 
 IAP	

dt
¼ �v2�v9

d½BAR	
dt

¼ �v11�v12
d½C8� 
 BAR	

dt
¼ �v11�v13:

ð3:53Þ

Figure 3.35 Outline of the apoptotic model developed by Eissing
et al. [66]. It comprises the components of the extrinsic pathway of
apoptosis. The asterisk (�) denotes the activated form of a
caspase.

136j 3 Specific Biochemical Systems



The rate equations read as follows:

v1 ¼ k1 � ½C8�	 � ½C3	
v2 ¼ k2 � ½C3�	 � ½C8	
v3 ¼ k3 � ½C3�	 � ½IAP	�k�3 � ½C3� 
 IAP	
v4 ¼ k4 � ½C3�	 � ½IAP	
v5 ¼ k5 � ½C8�	
v6 ¼ k6 � ½C3�	
v7 ¼ k7 � ½C3� 
 IAP	
v8 ¼ k8 � ½IAP	�k�8
v9 ¼ k9 � ½C8	�k�9
v10 ¼ k10 � ½C3	�k�10
v11 ¼ k11 � ½C8�	 � ½BAR	�k�11 � ½C8� 
 BAR	
v12 ¼ k12 � ½BAR	�k�12
v13 ¼ k13 � ½C8� 
 BAR	:

ð3:54Þ

In this model, procaspase-8 (C8, denoting initiator procaspases 8 and 10) is
activated by an extracellular signal mediated by death receptors. Activated cas-
pase-8 (C8�) subsequently cleaves and activates procaspase-3 (C3, representing the
executioner caspases in general, e.g., caspases 3, 6, 7) by forming active caspase-3
(C3�). Caspase-3 leads to apoptosis and acts in terms of a positive feedback loop onto
procaspase-8. The caspase inhibitor IAP can bind caspase-3 reversibly by forming the
complex C3� 
 IAP. Activated caspases as well as C3� 
 IAP are continuously
degraded. Furthermore, IAP degradation is mediated by caspase 3. In addition to
this, an inhibitor of C8� called BAR [67] was introduced by Eissing et al. [66].
Themodel was used for the study of the bistable switch from the status �alive� into

the apoptotic state. Therefore, simulationswere performed by Eissing et al. [66] using
the following initial concentrations and parameter values. Concentrations of the
model components are given as molecules per cell. With an estimated cell volume of
1 pl, one can easily transform these values into more common units. Initial
concentrations for caspase-8 and -3 are 130,000 and 21,000 molecules/cell, respec-
tively. The initial concentrations of active caspase-3 and the complexesC3� 
 IAP and
C8� 
BAR are assumed to be 0molecules/cell. Concentrations of the inhibitors IAP
and BAR are assumed to be 40,000 molecules/cell at the beginning. The initial
amount of activated caspase-8 (C8�) represents the input signal of the signaling
cascade. In the example displayed here, it varies between 0 and 3000 molecules/cell.
The kinetic parameters of the model as elaborated by Eissing et al. [66] mostly from
literature are displayed in Table 3.6.
As outlined above, apoptosis should display a bistable behavior, but the status

�alive� must be stable and resistant toward minor accidental trigger signals, i.e.,
noise. However, once the apoptotic signal is beyond a certain threshold, the cell must
irreversibly enter apoptosis.
Simulations of themodel, using the parameters shown inTable 3.6, show abistable

behavior (Figure 3.36). The simulation results, with varying input signals between 0
and3000molecules/cell of activated caspase-8, show a low amount of active caspase-3
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until the concentration of active caspase-8 exceeds a threshold. Then the model
switches from the status �alive� into the apoptotic state indicated by a steep rise in the
amount of active caspase-3. The apoptotic state is reached with a time delay that is
inversely proportional to the initial input signal. Both the states (�alive� and apoptotic)
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Figure 3.36 Bistable behavior of the extrinsic apoptosis model
versus varying input signals. The input signal is modeled by the
initial concentration of the activated caspase-8 [66].

Table 3.6 Parameter values of the model described by Eissing et al. [66].

Parameter Value Reverse parameter Value

k1 5.8· 10�5 cellmin�1mo�1 K�1 0
k2 10�5 cellmin�1mo�1 k�2 0
k3 5 · 10�4 cellmin�1mo�1 k�3 0.21min�1

k4 3 · 10�4 cellmin�1mo�1 k�4 0
k5 5.8· 10�3min�1 k�5 0
k6 5.8· 10�3min�1 k�6 0
k7 1.73· 10�2min�1 K�7 0
k8 1.16· 10�2min�1 k�8 464mo cell�1min�1

k9 3.9· 10�3min�1 k�9 507mo cell�1min�1

k10 3.9· 10�3min�1 k�10 81.9mo cell�1min�1

k11 5 · 10�4min�1 k�11 0.21min�1

k12 10�3min�1 k�12 40mo cell�1min�1

k13 1.16· 10�2min�1 k�13 0
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Figure 3.37 Schematic representation of central components of
the intrinsic apoptotic signaling pathway developed by Legewie
et al. [68]. Casp9denotes the autoproteolytically processed formof
caspase-9 that is cleaved at Asp315, and Casp9� is the form
processed by caspase-3 at Asp330.
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are stable states with the used parameter values for this model. Eissing et al. [66]
showed that the same model without the inhibition of activated caspase-8 by BAR
(�single inhibition model�) also shows a bistable behavior, but with an unstable life
steady state within the used kinetic parameter space.
Legewie et al. [68] developed a model of a central part of the intrinsic apoptotic

pathway that describes the activation of caspase-3 by active caspase-9 (Fig-
ure 3.37). Caspase-9 can be activated in two different ways (Figure 3.38). First
of all recruited by the apoptosome, it can be autoproteolytically processed at
amino acid Asp315 that results into the formation of the two subunits p35/p12.
Furthermore, caspase-9 can also be activated by active caspase-3 through prote-
olysis at Asp330 that results in the formation of the two subunits p37 and p10.
The activation of caspase-9 by caspase-3 results in a positive feedback activation
and signal amplification. The stimulation of intrinsic apoptosis is given in this
model by the amount of the apoptosomes (Apaf1/Cyt c). It is assumed that
caspase-9, which is associated with the apoptosome, cleaves procaspase-3 much
more efficiently (70 times) than free caspase-9. Furthermore, caspase-9 that was
processed by caspase-3 at Asp330 is 10 times more efficient than caspase-9 that was
processed autocatalytically at Asp315. Both caspase-3 and caspase-9 can be inhibited
by XIAP (and other IAPs that are not explicitly modeled). Legewie et al. [68] have
demonstrated that the inhibition of caspase-3 and caspase-9 by XIAP results in an
implicit positive feedback. Cleaved caspase-3 augments its own activation by
sequestering the inhibitor XIAP away from caspase-9. This implicit positive
feedback brings about bistability, which is an essential claim on apoptosis. Further-
more, the authors show that this positive feedback cooperates with caspase-3-
mediated feedback cleavage of caspase-9 to generate irreversibility in the caspase
activation.

Figure 3.38 Diagramof procaspase-9 and its proteolytic products
by caspase-9-mediated cleavage at Asp315, caspase-3-mediated
cleavage at Asp330, or both [69].
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Exercises and Problems

1. Calculate the flux control coefficients for the model of the threonine synthesis
pathway. If required, use a computational tool providing the necessary
functions.

2. Consider the Ras activation cycle shown in Figure 3.14 with the parameters given
there. The concentration of GAP be 0.1. GEF gets activated according to

GEF ¼ 0; t < 0
e�0:2t; t � 0

�
. Calculate the signaling time tRasGTP and the signal dura-

tion WRasGTP (Eqs. (3.26) and (3.27)).

3. MAP kinase cascades comprise kinases and phosphatases. How would such a
cascade behave if there were no phosphatases?

4. Game of Life. (a) Invent two initial configurations that remain unchanged
under the updating rules of the game of life. (b) Simulate the following
patterns (called �glider� and �lightweight spaceship�) with paper and pencil.
The surrounding cells are supposed to be empty (�dead�). (c) Implement
the game of life as a computer program and play with random initial config-
urations.

(1) (2)

5. Show that the diffusion equation is solved by spatial cosine profiles with
temporally decreasing amplitude

sðx; tÞ ¼ so e
�lðkÞt cosðkxÞ

and compute the dispersion relation l(k).

6. Show that the stationary profile

sstðxÞ ¼ 6D=k
ðxþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6D=ðksoÞ
p Þ2 ¼

6D=k
ðxþð2Da=jð0ÞÞ1=3Þ2

where a¼ 6D/k is a solution of the Bicoid reaction–diffusion system with
autocatalytic degradation term �k � s(x, t)2 (see Section 3.4.4). Hint: use the
ansatz sst(x)¼ a/(x þ b)2.
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7. The pair-rule gene eve is expressed in seven stripes in the blastoderm of the
fruit fly Drosophila melanogaster. The stripes do not arise from spontaneous
pattern formation, but from a response to existing patterns of the regulatory
proteins Kr€uppel, Bicoid, Giant, andHunchback. The response is hard-coded in
the regulatory region of the eve gene. Speculate in broad terms about
advantages and disadvantages of spontaneous and �hardwired� pattern
formation.

8. Describe the different phases of the eukaryotic cell cycle.What are the threemost
important regulatory cell-cycle checkpoints?

9. Describe the crosslink between the intrinsic and the extrinsic apoptotic pathway.

10. How can a mathematical model of, e.g., apoptosis be used for the identification
of potential drug targets?
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4
Model Fitting

4.1
Data for Small Metabolic and Signaling Systems

Summary

The mathematical equations that are used to develop kinetic models of biochemical
systems are so complex that, except for the most simple cases, it is impossible to
solve them analytically. Therefore, numerical simulations are required to predict
how concentrations develop over time and when and if the systemwill reach a steady
state. But numerical simulations need numerical data to assign specific values to a
large number ofmolecule properties. Among these properties areMichaelis–Menten
constants, Km, and maximal velocities, Vmax, (for enzymes), but also biological
half-lives, binding constants, molecule concentrations, and diffusion rates. In the
early days of mathematical modeling, it was very difficult to obtain enough data of
sufficient quality to make reliable model predictions. In such a situation, only
qualitative models can be constructed that investigate the question if a certain
behavior is at all possible or not. Although such a model provides valuable
information about a system of biochemical reactions, most models today aim to
be quantitative. This means that the model should agree well with measured
concentrations and also predictions regarding changes of molecule concentrations
are given as specific numbers instead of a qualitative up or down statement. To
develop quantitative models, it is therefore essential to obtain a large number of
reliable data for the model parameters. One source are specialized databases, which
will be discussed in this section. But the process of filling these databases is currently
very time-consuming, since most kinetic data have to be extracted by hand from the
existing literature. Recently developed experimental techniques aim to improve
the situation by enabling researchers to measure large numbers of kinetic data with
high accuracy. Some of these techniques will be described at the end of chapter 4.1.

Systems Biology: A Textbook. Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald,
Hans Lehrach, and Ralf Herwig
Copyright � 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31874-2
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4.1.1
Databases for Kinetic Modeling

BRENDA is a database that aims to be a comprehensive enzyme information system
(http://www.brenda-enzymes.info). BRENDA is a curated database that contains
a large number of functional data for individual enzymes (Figure 4.1). These data
are gathered from the literature and made available via a web interface. Table 4.1
gives an overview of the types of information that is collected and the number of
entries for the different information fields (as of November 2007). For instance,
enzymes representing 4762 different EC numbers and almost 80,000 different Km

values exist in the database.
One of BRENDA�s strengths is themultitude ofways the database can be searched.

It is easy to find all enzymes that are above a specific molecular weight, belong to C.
elegans, or have a temperature optimum above 30 �C. If desired, the list of results
can then be downloaded as a tab separated text file for later inspection. Using the
Advanced Search feature, it is possible to construct arbitrarily complex search queries
involving the information fields shown in Table 4.1.
Sometimes it is desirable to search for all enzymes that are glycosylases without

knowing the corresponding EC number, or to find all enzymes that are found in
horses without knowing the exact scientific name. In this situation the ECTree

Figure 4.1 The curated database BRENDA (http://www.brenda-en2ymes.
info) provides detailed information for more than 4000 different enzymes,
including kinetic data such as Km values.
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Table 4.1 BRENDA collects many types of information regarding
enzymes. Each information field can be used for search queries,
which makes it possible to perform very complex and specific
searches.

Information field Entries Information field Entries

Enzyme nomenclature Functional parameters
EC number 4762 Km value 79,435
Recommended name 4757 Turnover number 240,77
Systematic name 3650 Specific activity 30,420
Synonymes 53,396 pH range and optimum 6609/25,681
CAS Registry Number 4383 Temperature range and optimum 2186/12,319
Reaction 10,731 Molecular properties
Reaction type 7783 pH stability 4650
Enzyme structure Temperature stability 13,149
Molecular weight 24,424 General stability 6653
Subunits 22,750 Organic solvent stability 787
Sequence links 283,733 Oxidation stability 599
Posttranslational modifications 4687 Storage stability 9084
Crystallization 5105 Purification 25,927
3D-structure, PDB links 35,400 Cloned 16,303
Enzyme–ligand interactions Engineering 23,235
Substrates/products 222,285 Renatured 625
Natural substrates 51,126 Application 4760
Cofactor 16,302 Organism-related information
Activating compound 18,466 Organism 364,770
Metals/ions 27,668 Source tissue, organ 65,938
Inhibitors 11,2470 Localization 29,906
Bibliographic data
References 30,0190

browser and the TaxTree search are helpful by providing a browser like interface to
search down the hierarchy of EC number descriptions or taxonomic names.
BRENDA is also well connected to other databases that can provide further

information about a specific enzyme. Associated GO terms are directly linked to the
AmiGObrowser, substrates andproducts of the catalyzed reactions canbedisplayed as
chemical structures, links to the taxonomic database NEWT (http://www.ebi.ac.uk/
newt) exist for information on the organism, sequence data can be obtained form
Swiss-Prot and if crystallographic data exist, a link toPDB (seeChapter 16) is provided.
Finally, literature references (including PubMed IDs) are provided and the imple-
mentedweb service allows programmatic access to thedata via a SOAP (SimpleObject
Access Protocol) interface (http://www.brenda-enzymes.org/soap).
SABIO-RK (http://sabio.villa-bosch.de/SABIORK) is another web-based database

for information about biochemical reactions, kinetic rate equations, and numerical
values for kinetic parameters. The information contained in SABIO-RK is partly
extracted from KEGG (see Chapter 16) and partly from the literature. Currently the
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database (version 20090312) is much smaller than BRENDA, containing for instance
Km values for 367 reactions of E. coli, 817 reactions ofH. sapiens, or 128 reactions of
S. cerevisiae. Themain access to thedata is via a search for reactions. Several constraints
for the reaction like participating enzyme and reactants, biochemical pathway,
organism and cellular location can be used to narrow down the search. The results
page provides further information about the reaction (with links to EC information,
UniProt, and PubMed) and available kinetic data. A potentially very useful feature of
SABIO-RK is that the kinetic information for selected reactions can be exported as
SBML format (see Section 6), which could considerably speed up the development in
models for simulations. However, there are several points that need special consider-
ation. It is advisable to search only reactions for which Km, Vmax and a rate law exists,
otherwise the SBML file will contain no reaction and unknown parameters will be set
to zero. ForSBMLexport it is also important to select �export parametersnormalized to
SI base units� to ensure that always standard units are used. In addition the produced
SBMLfile should be inspectedmanually to check the result. Finally, like BRENDA, the
contents of SABIO-RK can be accessed via web services.

4.1.2
Measuring Promoter Activities Using GFP Reporter Genes

The kinetic data in BRENDA or SABIO-RK are extracted from the literature of
the last decades. This is not only very time-consuming, but it alsomeans that the data
were obtained from amultitude of different organisms under different experimental
conditions from different experimenters. Recently green fluorescent protein (GFP)-
based high throughput techniques have been developed that have the potential
to improve the situation considerably. GFP is a 27 kDa protein found in jellyfish [1],
and is frequently used as reporter gene (see also Section 11.14). Work by [2] shows
that kinetic parameters of E. coli promoters can be determined in parallel by using
GFP reporter constructs to measure promoter activity with high accuracy and
temporal resolution. For this purpose the promoter region of interest is cloned in
front of a GFP gene and the whole construct is placed on a plasmid together with a
selection marker and a low copy origin of replication (see also Section 11.2). The
authors used this approach to study eight operons of the bacterial SOS repair
system by measuring fluorescence and optical density (OD) every 3min. From the
resulting 99 data points per operon kinetic parameters of the promoters can be
derived using a simple mathematical approach.
The activity of promoter i, Xi, is proportional to the number of GFP molecules

synthesized per time interval per cell. Since degradation of GFP can be neglected,
promoter activity is given by the derivative of the amount Gi of GFP, normalized by
the optical density.

XiðtÞ ¼ dGiðtÞ=dt
ODiðtÞ :

A single transcription factor suppresses all operons of the SOS system without
influence from other transcription factors. It is therefore reasonable to model the
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promoter activity by a Michaelis–Menten type kinetics, where A(t) is the repressor
concentration, bi is the activity of the unrepressed promoter i, and Ki is the repressor
concentration at half maximal repression.

XiðtÞ ¼ bi
1þAðtÞ=Ki

:

All kinetic parameters as well as the time-dependent activitiesA(t) of the repressor
LexA were estimated by a least-squares fit. For the fitting, all time series Xi(t) were
normalized to the same maximal activity. The values of A(t) and the Ki can only be
determined up to a scaling factor because a rescaling A ! lA, Ki ! lKi does not
affect the model predictions. As further constraints, it was required that A(t)> 0
(no negative concentrations) andA(0)¼ 1 (normalization). The following table shows
the obtained values for the eight studied promoters. For six of the eight cases the
mean error for the predicted promoter activity is below 22%, which is a very good
quantitative prediction. The genes uvrYand polB, however, showed errors of 30–45%,
indicating that these genes are possibly influenced by additional factors. This study
shows that kinetic data can be obtained using an approach that can, in principle, be
scaled up to the whole genome.

Gene K b Error Function

uvrA 0.09� 0.04 2800� 300 0.14 Nucleotide excision repair
lexA 0.15� 0.08 2200� 100 0.10 Transcriptional repressor
recA 0.16� 0.07 3300� 200 0.12 LexA autocleavage, replication fork

blocking
umuD 0.19� 0.1 330� 30 0.21 Mutagenesis repair
polB 0.35� 0.15 70� 10 0.31 Translesion DNA synthesis, replica-

tion fork recovery
ruvA 0.37� 0.1 30� 2 0.22 Double strand break repair
uvrD 0.65� 0.3 170� 20 0.20 Nucleotide excision repair,

recombination repair
uvrY 0.51� 0.25 300� 200 0.45 Unknown function

The use of GFP and its variants for measuring kinetic and other data has several
advantages over traditional experimental techniques.

. It opens the possibility to obtain kinetic data in a high throughput approach.

. Themeasurements have a high time resolution (one data point every fewminutes).

. The kinetic parameters are measured under in vivo conditions.

. Using high throughput flow cytometry and microscopy it is possible to perform
single cell measurements (see also Section 11.14).

. The reproducibility of the measurements is very good (around 10% error).

These attractive features have led to a number of very interesting studies in recent
years. One limitation of the algorithm used by [2] is that it cannot be applied to
systems where more than one transcription factor controls the promoter activity.
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For this it is necessary to have a quantitative understanding how the input signals
of different transcription factors are combined into the output signal (promoter
activity). Section 6.1. describes, in detail, how this has been achieved for the promoter
of the lac operon of E. coli.
In another study, 52 promoters of E. coli amino acid biosynthesis pathways were

investigated by placing the regulatory regions in front of a GFP gene [3]. Cells were
shifted from a medium without any amino acids to a medium that contained a
single amino acid and GFP expression was measured every 8min for 8 h. The
results showed that the promoters of enzymes early in unbranched pathways have
the shortest response time and strongest activity. This design principle agree nicely
with the results of a mathematical model that was optimized to achieve a flux goal
with minimal enzyme production. The same group extended this GFP-based
approach to a genomic scale by generating reporter strains for all intergenic
regions in E. coli that are larger than 40 bp [4]. The resulting library of 2000
constructs was used in a diauxic shift experiment, where cells first feed on glucose
and then switch to lactose once the glucose levels are depleted. This led to the
discovery of 80 previously unknown promoters.
In another high throughput experiment, GFP constructs were used to provide

genome wide information about protein localization in S. cerevisiae [5]. For each
annotated ORF, a pair of oligonucleotides was synthesized with homologies to the
desired chromosomal insertion site. After placing the GFP sequence between these
short sequences, the whole construct was inserted at the C terminus of each ORF
using homologous recombination. This resulted in 4156 fusion proteins (75% of the
yeast proteome) with a C terminal GFP tag. The information regarding the cellular
localization of these proteins is publicly available at http://yeastGFP.ucsf.edu.
Together with the spatial information, the website also provides information about
individual protein numbers per cell.

4.2
Parameter Estimation

Summary

Parameters in a model can be determined by fitting the model to experimental data.
In the method of least squares, a common approach in parameter estimation, the
sumof squared residuals betweenmodel predictions and data isminimized. For data
with additive standard Gaussian errors, this method is equivalent to maximum
likelihood estimation. The variability of parameter estimates due to noisy and
insufficient data can be assessed by repeating the estimation with resampled data
(�bootstrapping�) and the quality of model predictions can be tested by cross-
validation. In Bayesian parameter estimation, parameter sets are scored by how well
they agree with both available data and with certain prior assumptions, which are
expressed by probability distributions of the parameters. The parameter estimation
often leads to minimization problems, which can be solved with a variety of local or
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global optimization algorithms. Local optimizers are relatively fast, but they may get
stuck in suboptimal local optima. Global optimizers like simulated annealing or
genetic algorithms can evade local minima, but they may be numerically demanding.

In modeling of biochemical systems, the mathematical structure of a model (e.g.,
the stoichiometric matrix and the kinetic laws) is often known, while the parameter
values (e.g., kinetic constants or external concentrations) still need to be determined.
Parameter values can be obtained by fitting the model outputs (e.g., concentration
time series) to a set of experimental data. If a model is correct and the data are free
of experimental errors, the parameters can be adjusted such that model outputs
and data coincide. Moreover, if the model is structurally identifiable (a property that
will be explained below) and if enough data are available, this procedure will allow us
to determine exactly the true parameter set because for all other parameter sets,
data and model output would differ.
In reality, however, experimental data are noisy. A common assumption is that

the measured values (possibly on logarithmic scale) represent true values – which
correspond to themodel outputs – plusGaussian-distributed randomerrors. Despite
these errors, we can use such data to obtain parameter estimates that approximate
the true parameter values. Statistical methods can help us to find good estimation
procedures and to assess the uncertainty of the estimates [6]. Common modeling
tools contain routines for parameter estimation [7]. For an example of parameter
estimation and model selection, see [8].

4.2.1
Regression

Regression is a good example of parameter estimation. Here, we shall discuss
regression problems to introduce concepts like estimators and likelihood. Later, in
Section 4.4 on model selection, we shall apply the same concepts to dynamical
models. In the linear regression problem shown in Figure 4.2, a number of data
points (tm, ym) have to be approximated by a straight line x¼ f (t, q)¼ q1t þ q2. If the
data points were already located on a straight line, we could choose a parameter vector
q¼ (q1, q2)T such that 8i : ym¼ f (tm, q). In practice, experimental data points will
rather be scattered around a line, so we require that the regression line should be as
close as possible to the data points. The deviation between line and data can be
quantified by the sum of squared residuals (SSR), RðqÞ ¼P

mðym�f ðtm; qÞÞ2. With
this choice, the regression problem leads to an optimization problem, namely,
finding the minimum of the function R(q).

4.2.2
Estimators

The use of the SSR as a distance measure can be justified by statistical arguments,
assuming that the data have been generated by a known model with unknown
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parameters. As an example, we consider a curve f (t, q) with the independent variable t
(e.g., time) and curve parameters q1, . . . , qN. For a given number of values tm, the
model yields the output values xm¼ f (tm, q), which form a vector x¼ x(q). By adding
random errors xm, we obtain the noisy data

ym ¼ f ðtm; qÞþ xm: ð4:1Þ

If the random errors are independent Gaussian with mean 0 and variance s2
m,

then each of the data points ym is a Gaussian-distributed random number withmean
f(tm, q) and variance s2

m.
In parameter estimation, the process of data generation is inverted: we start with

a model (given as a function x(q) and noise variances s2
m) and a set of noisy data y

(a specific realization of the above random numbers) and try to infer approximately
the unknown parameter set q. This is done by an estimator q̂ðyÞ; a function of the data
that is supposed to approximate the true parameter vector q.
A practical and fairly simple estimator can be derived from the principle of

maximum likelihood: given a generative model y¼ x(q) þ x, the probability density
for observing a data set y given the true parameter set q is called p(y|q). If a certain
data set y is given, this probability density, as a function of the parameter set q, is
called the likelihood function L(q|y)¼ p(y|q). The maximum likelihood estimate
q̂MLðyÞ is defined as the parameter set that maximizes the likelihood:

q̂MLðyÞ ¼ argmaxq LðqjyÞ: ð4:2Þ

We assume here that there is a unique maximum point. If this is not the case, the
model is not identifiable (see Section 4.2.3).
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Figure 4.2 Linear regression leads to an
optimization problem. (a) Artificial data points
(tm, ym) (grey) are created by adding Gaussian
noise to data points (black) from a model x
(t)¼ q1(t) þ q2 (straight line). Each possible line
is characterized by two parameters, the slope q1
and the offset q2. The aim in linear regression is
to reconstruct the unknown true parameters
from noisy data (in this case, the artificial data
set y). (b) The distance between a possible line

(four lines A, B, C, andD are shown) and the data
points can be measured by the sum of squared
residuals (SSR). The residuals are shown for line
D (red dashed lines). (c) Each of the lines A, B, C,
and D corresponds to a point (q1, q2) in
parameter space. The SSR as a function R(q)
forms a landscape in parameter space
(schematically shown by shades of pink, dark
pink indicates small SSR). Line D minimizes the
SSR value.
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4.2.2.1 Method of Least Squares and Maximum-Likelihood Estimation
Let us now compute the likelihood function for the model (Eq. (4.1)) with additive
Gaussian noise. If themodel yields the true value xm, a noisy value ymwill be observed
with a probability density px(ym� xm), where px (x) is probability density of the error
term. We assume that each xm is independently Gaussian distributed with mean 0
and variance s2

m, so its density reads

pxmðxÞ ¼
1ffiffiffiffiffiffi
2p
p

sm
e
� x2

2s2m : ð4:3Þ

From a single data point ym, we would obtain the likelihood function

LðqjymÞ ¼ pðymjqÞ ¼ pxm ðym�xmðqÞÞ: ð4:4Þ
As the noise for different data points is supposed to be independent, the probability
to observe an entire data set y is the product of the probabilities for the individual
data points. Hence, the likelihood is given by

LðqjyÞ ¼ pðyjqÞ ¼
Y
m

pxmðym�xmðqÞÞ: ð4:5Þ

By inserting the probability density (4.3) into Eq. (4.5) and taking the logarithm, we
obtain

ln LðqjyÞ ¼
X
m

�ðym�xmðqÞÞ
2

2s2
m

þ const: ð4:6Þ

If we assume that the noise for all data points has the same variance s2, the
logarithmic likelihood reads

ln LðqjyÞ ¼ � 1
2s2

X
m

ðym�xmðqÞÞ2þ const:

¼ �RðqÞ=ð2s2Þþ const:;
ð4:7Þ

whereR(q)¼ ||y� x(q)||2 is the sum of squared residuals. Thus, with the errormodel
(4.3), maximizing the likelihood is equivalent to the principle of least squares.
The above argument also holds for data values on a logarithmic scale. The additive

Gaussian errors for logarithmic data are equivalent to multiplicative log-normally
distributed errors for the original, non-logarithmic data. By assuming the same
variance s2 for all the logarithmic data, we imply that the non-logarithmic data have
the same range of relative errors.

4.2.3
Identifiability

The likelihood function forms a landscape in parameter space (just like the SSR
shown in Figure 4.2) and the maximum likelihood estimate q̂ is the maximum
point of this landscape – provided that it is indeed a single isolated point. In this case,
the logarithmic likelihood function ln L(q|y) can be expanded to second order based
on the local curvaturematrix q2 ln L(q|y)/qqiqqk and in a uniquemaximum point, the
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curvatures are strictly negative. Directions with a small curvature correspond to
parameter deviations that would only have little effect on the likelihood.
In parameter estimation, different parameter sets may happen to agree equally

well with the data. In this case, the maximum likelihood criterion cannot be applied
and the estimation problem is underdetermined (Figure 4.3). Often, the likelihood
function becomes maximal on an entire curve or surface in parameter space rather
than in a single point. Such cases of non-identifiability can have two reasons:

1. Structural non-identifiability. If two parameters qa and qb appear in amodel only in
the form of the product c¼ qaqb, then any choice q0a ¼ lqa and q0b ¼ qb=lwould
yield the same result q0aq0b ¼ qaqb, leading to the same model predictions and to
the same likelihood value. Thus, a maximum likelihood estimation (which
compares model predictions to data) may suffice to determine the product
c¼ qaqb, but not the individual parameter values qa and qb. In such cases, the
model is called structurally non-identifiable. To resolve the problem in this example,
we could replace the product qaqb by a new, possibly identifiable parameter qc.
Structural non-identifiability can arise fromvarious kinds of formulas andmay be
difficult to detect and to resolve.

2. Practical non-identifiability. Even if a model is structurally identifiable, parameters
may still be practically non-identifiable if the data are insufficient, i.e., either too
few or the wrong kind of data are used for the estimation. In particular, if the
number of parameters exceeds the number of data points, the parameters cannot
be determined. Let us assume that each possible parameter set q corresponds to
a data set x(q) (no experimental noise) and that the function x(q) is continuous.
If the dimensionality of q is larger than the dimensionality of x, it is certainly
impossible to invert the function x(q) and to reconstruct the parameters from a
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residuals
R(θ) = sum of squared

Figure 4.3 Identifiability. (a) In an identifiable
model, the sum of squared residuals (SSR,
schematically shown as shades of pink) is
minimized in a single point (dot). The second
derivatives (i.e., the curvatures) of the SSR forma
matrix. In the two-dimensional case shown, its
two eigenvectors point toward directions of
maximal (blue) and minimal curvature

(magenta), respectively. (b) In a nonidentifiable
model, the SSR is minimal on a line (or in
general, a manifold) in parameter space. Some
linear combinations of parameters (magenta
arrow) canbe inferred from the data,while others
(blue arrow) are nonidentifiable – accordingly,
the curvature of the SSR vanishes in these
directions.
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given data set. A rule for the minimum number of experimental data needed to
reconstruct differential equation models is given in [9].

If a model is not identifiable, numerical parameter optimization with different
starting points will lead to different estimates q̂, which may all lie on the same
manifold in parameter space. In the above example, for instance, the parameter
estimates for qa and qb would be different every time, but they would always satisfy
the relation ln qa þ ln qb¼ ln cwith the same value for c, so on a logarithmic scale, all
estimates would lie on a straight line (provided that all other model parameters are
identifiable).
The task of parameter identification from given data is often called an inverse

problem. If the solution of an inverse problem is not unique, the problem is ill-posed
and additional assumptions are required to pinpoint a unique solution. For instance,
we may postulate that the sum of squares of all parameter values is supposed to be
minimal. This additional requirement can help to determine a particular solution,
a trick called �regularization�.

4.2.4
Bootstrapping

Anoisy data set y¼ x(q) þ xwill not allowus to determine the truemodel parameters
q, but only an estimate q̂ðyÞ. Each time we repeat the estimation with different data
sets, we deal with a different realization of the random error x and obtain a different
estimate q̂. Ideally, the mean value hq̂i of these estimates should be identical to the
true parameter value (in this case, the estimator is called �unbiased�), and their
variance should be small. In practice, however, only a single data set is available, sowe
obtain a single point estimate q̂ without knowing its distribution. Bootstrapping [10]
provides a way to determine, at least approximately, the statistical properties of the
estimator q̂. First, hypothetical data sets (of the same size as the original data set) are
generated from the original data by resamplingwith replacement (see Figure 4.4) and
the estimate q̂ is calculated for each of them. The empirical distribution of these
estimates is then taken as an approximation of the true distribution of q̂. The
bootstrapping method is asymptotically consistent, that is, the approximation
becomes exact as the size of the original data set goes to infinity. However, for finite
data sets, it does not provide any guarantees.

Example 4.1: Bootstrapping applied to the estimation of mean values

Ten numbers (x1, . . . , x10) are drawn from a random distribution. We use the
empirical mean �x ¼ 1=10

P10
m¼1 xm of this sample to estimate the true expected

value hxi of the underlying random variable X. Our aim is to assess the mean and the
variance of the estimator�x. In the bootstrappingmethod,we randomly drawnumbers
z from the given sample (x1, . . . , x10). Using these random numbers, we form new
tuples (bootstrap samples) zðkÞ ¼ ðzðkÞ1 ; . . . ; zðkÞ10 Þ and compute the empirical mean
�zðkÞ ¼ 1=10

P10
i¼1 z

ðkÞ
i for each of them. A statistics of the values �zðkÞ is used as an

approximation of the true distribution of �x.
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4.2.5
Crossvalidation

There exists a fundamental difference between model fitting and prediction. If a
model has beenfitted to a given data set, it will probably show a better agreementwith
these training data than with new test data that have not been used for model fitting.
The reason is that inmodelfitting, we enforce an agreement with the data. Therefore,
a fitted model will often fit the data better than the true model itself, a phenomenon
called overfitting. Despite its good fit, however, an overfitted model will not predict
new data as reliably as the truemodel does.Moreover, the parameters of an overfitted
model may differ strongly from the true parameter values. Therefore, strong over-
fitting should be avoided.
We have seen an example in Figure 4.2: the least-squares regression line yields a

lower SSR than the true model itself – because it has been optimized for it. This
apparent improvement is achieved by fitting the noise, i.e., by adjusting the line to
this very specific realization of the random errors in the data. However, this
adjustment does not help when it comes to predicting points from a new data set;
here, the true model is likely to perform better.
How can we check how a model performs in prediction? In crossvalidation (see

Figure 4.5), a given data set (sizeN) is split into two parts: a training set of size n and a
test set consisting of all remaining data. The model is fitted to the training data and
the prediction error is evaluated for the test data. Then, a different part of the data is
chosen as the test set. By repeating this procedure for many choices of test sets, we
can judge howwell themodel, after beingfitted to n data points, will predict new data.
The mean prediction error is an important quality measure of a model. It allows to
reject models that are prone to overfitting (e.g., because they contain too many
parameters, see Section 4.4.). However, crossvalidation – just like bootstrapping – is
numerically demanding because of the repeated estimation runs.
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Figure 4.4 The bootstrapping method. (a) Hypothetical data
sets are created by resampling data values from the original
data set. Each resampled data set yields a parameter estimate q̂.
(b) The distribution of the parameter estimates, obtained
from the bootstrap samples, approximates the true distribution
of the estimator q̂. A good approximation requires a large
original data set.

158j 4 Model Fitting



4.2.6
Bayesian Parameter Estimation

In parameter estimation as explained above, we suppose that there exists a single
true parameter set, which is fixed, but unknown. Bayesian parameter estimation,
an alternative approach, is based on a completely different premise: The parameter
set q is not fixed, but described as a random variable. By choosing its probability
distribution, called the prior, we can state which parameter sets we regard as most
plausible in advance. For each possible parameter set q, we assume that a specific data
set ywill be observed with a probability density (likelihood) p(y�|q). Hence, parameters
and data follow a joint probability distribution with density pðy; qÞ ¼ pðy jqÞpðqÞ (see
Figure 4.6).
From this joint distribution, we can also compute the conditional probabilities

of parameters given the data. If a data vector y has been observed, the conditional
probability of a parameter set given these data is called the posterior probability. With
the Bayesian formula, the posterior probability density can be written as

pðqjyÞ ¼ pðyjqÞpðqÞ
pðyÞ : ð4:8Þ

It is proportional to the product of likelihood and prior density and represents a
compromise between them. For a given data set y, the denominator p(y) is a fixed
number, which appears only as a normalization term.
Bayesian parameter estimation and maximum likelihood estimation differ both

in their interpretation and in their practical use. In maximum likelihood estimation,
we ask �which hypothesis about the parameterswouldmake the data look probable?�,
while in Bayesian estimation, we directly ask �which parameters appear most
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Data Training set
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Figure 4.5 Crossvalidation can be used to detect
overfitting. (a) In a linear regression, a straight
line is fitted to four data points (grey and pink).
The fitting error (dotted red line) is the distance
between a data point (pink) and the
corresponding value of the regression line (blue).
The regression line is optimized for small fitting
errors. (b) In leave-one-out crossvalidation, we
pretend that a point (pink) is unknownandhas to
be predicted from the model. As the regression
line is fitted to the remaining (grey) points, the
deviation for the pink point (prediction error) will

be larger than the fitting error shown in (a).
(c) Scheme of leave-one-out crossvalidation.
The model is fitted to all data points except for
one (�training set�) and the remaining data point
(�test set�) is predicted. This procedure is
repeated for every data point to be predicted and
yields an estimate of the average prediction error.
(d) In k-fold crossvalidation, the data are split
into k subsets. In every run, k� 1 subsets serve
as training data, while the remaining subset is
used as test data.
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probable given the data?�. Moreover, the aim in Bayesian statistics is usually not to
choose a single parameter set, but to characterize the entire probability distribution
(e.g., marginal distributions of individual parameters, probabilities for model pre-
dictions). For complicated problems, this is usually done by sampling parameter sets
q from the posterior p(q|y), for instance, using the Metropolis–Hastings algorithm
described below.
The prior in Bayesian parameter estimation is usually used to express general

beliefs or previous knowledge about the parameter values. Besides this, it can also be
used as a regularization term to make models identifiable. By taking the logarithm
of Eq. (4.8), we obtain the logarithmic posterior

lnpðqjyÞ ¼ ln LðqjyÞþ ln pðqÞþ const: ð4:9Þ
If the logarithmic likelihood (the first term) does not have a unique maximum point
in parameter space (for instance, as in Figure 4.3, right), the model will not be
identifiable by maximum likelihood estimation. Nevertheless, if the logarithmic
prior ln p(q|y) is added in Eq. (4.9), a unique maximum point can emerge at least for
the posterior density.

4.2.7
Local and Global Optimization

Model fitting often leads to an optimization problem of the form

min¼! f ðxÞ; ð4:10Þ
where x is a vector and the function f is real and differentiable twice. In themethod
of least squares, for instance, x denotes the parameter vector q and f is the sum of
squared residuals (SSR). In addition to Eq. (4.10), we may restrict the allowed
vectors x by constraints such as xmin

i � xi � xmax
i . Global and local minima are
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Figure 4.6 Bayesian parameter estimation. (a) In
Bayesian estimation, the parameters q and the
data y follow a joint probability distribution with
density p(y, q). The marginal probability density
p(q) of the parameters is called the prior (blue),
while the conditional density p(q|y) given a
certain data set is called the posterior (magenta).
(b) The posterior (magenta) ismore narrow than

the prior (blue), which reflects the information
gained by considering the data. (c) Prior,
likelihood and posterior. In a model, the data y
are given by a mean prediction x(q) (black line)
plus Gaussian noise. An observed value y gives
rise to a likelihood function L(q|y)¼ p(y|q) in
parameter space. The posterior is proportional
to the product of prior and likelihood function.

160j 4 Model Fitting



defined as follows. A parameter set x� is a global minimum point if no allowed
parameter set x has a smaller value of the objective function. A parameter set x� is a
localminimumpoint if no other allowed parameter set x in a neighborhood around
x� has a smaller value of the objective function. To find such optimal points
numerically, algorithms usually evaluate the objective function f (and possibly its
derivatives) in a series of points x leading to better and better points until a
convergence criterion is met.

4.2.7.1 Local Optimization
Local optimizers are used to find a local optimum point in the vicinity of a given
starting point. Usually, they evaluate the local gradient and improve the objective
function step be step until convergence. Simple gradient descent is based on the local
gradient !f (x), a vector that indicates the direction of the strongest increase of f.
A sufficiently small step in the opposite direction of the gradient will lead to lower
function values. Thus for a sufficiently small coefficient c,

f ðx�crf ðxÞÞ< f ðxÞ: ð4:11Þ

In gradient descent,we iteratively jump from the current pointx(n) to thenewpoint by

xðnþ 1Þ ¼ xðnÞ�crf ðxðnÞÞ: ð4:12Þ

The coefficient c can be adapted in each step, e.g., by a numerical line search

c ¼ argminc0 f ðx�c0rf ðxÞÞ: ð4:13Þ

Newton�s method is based on a local second-order approximation of the objective
function

f ðxþDxÞ � f ðxÞþrf ðxÞDxþ 1
2
DxTHðxÞDx ð4:14Þ

with the Hessian matrix Hij¼ q2f/qxi qxj. If we disregard the approximation error
in Eq. (4.14), a direct jump Dx to an extremum would require that

rf ðxÞþHðxÞDx ¼ 0: ð4:15Þ

In the iterative Newton method, we therefore jump from the current point x(n) to
the new point

xðnþ 1Þ ¼ xðnÞ�HðxðnÞÞ�1rf ðxðnÞÞ: ð4:16Þ
Again, the second term can be multiplied by a relaxation coefficient 0 < c < 1 to make
the iteration process more stable.

4.2.7.2 Global Optimization
Theoretically, a global optimum point could be found by scanning the entire
parameter space using an arbitrarily fine grid. However, for a problem with n
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parameters and m values for each of them, this would require mn function
evaluations, which soon becomes intractable. In practice, most global optimization
algorithms scan the parameter space by series of random jumps (Figure 4.7). Their
objective is to find high quality solutions (preferably solutions very close to a global
optimum or the global optimum itself as it usually happens) in short computation
times (or in an affordable number of function evaluations). In order to be able to
surmount basins of attraction containing local solutions, the algorithm may have
to allow movements toward worse solutions in some stages of the search. There is
a variety of global optimization algorithms [11, 12]. Examples of popular stochastic
algorithms are simulated annealing and genetic algorithms.
Besides pure local and global methods, there are also hybrid methods [13, 14],

which combine the robustness of global optimization algorithms with the efficiency
of local methods. They work by applying a local search from a selection of points
created in the global phase,which can accelerate the convergence to optimal solutions
up to some orders of magnitude. Hybrid methods usually implement a set of filters
to avoid local searches leading to optima that had been found previously.

4.2.7.3 Sampling Methods
Sampling methods like simulated annealing have been inspired by statistical
thermodynamics. In a physical analogy, we consider a particle with position x (scalar
or vectorial) thatmoves by stochastic jumps in an energy landscape E(x). In a thermal
equilibrium at temperature T, the particle position x follows the Boltzmann distribu-
tion with density

pðxÞ � e�EðxÞ=ðkBTÞ; ð4:17Þ
where kB is Boltzmann�s constant. The Boltzmann distribution can be realized
by the following random jump process (�Monte Carlo Markov chain�) called
Metropolis–Hastings algorithm [15, 16].
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Figure 4.7 Global optimization. (a) In a local
minimum point x, the function f assumes a
minimal value for a neighborhood around x.
A function may display different local minima
with different function values. (b) The
Metropolis–Hastings algorithm employs an

iterative jump process in which points x are
sampled with probabilities related to their
function values f(x). A jump that leads to lower
f values (A ! B) is always accepted, while an
upward jump (A ! C) is only accepted with
probability p¼ exp( f(xA)� f(xC)).
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1. Given the current position x(n) with energy E(x(n)), choose randomly a new
potential position x�.

2. If x� has an equal or lower energy E(x�)�E(x(n)), the jump is accepted, and we set
x(nþ 1)¼ x�.

3. If the new position has a higher energy E(x�)�E(x(n)), the jump is only accepted
with a probability

p ¼ exp
EðxðnÞÞ�Eðx*Þ

kBT

� �
:

To accept or reject a potential jump in the algorithm, we draw a uniform random
number zbetween 0 and1; if z < p, we accept the jumpand setx(nþ 1)¼ x�. Otherwise,
we keep the old position and set x(nþ 1)¼ x(n).
Programming the Metropolis–Hastings algorithm is straightforward; an impor-

tant restriction is that the potential jump in step 1has to satisfy the following property:
the probability for a potential jump from position x0 to position x00 must be the same
as for the potential jump from x00 to x0. Otherwise, the different probabilities need
to be taken into account by a modified acceptance function in step 3. Problems can
also arise if the potential jumps are too small. In this case, the particle will tend to stay
close to its current position, so the distribution will converge only very slowly to the
true Boltzmann distribution.
According to theBoltzmann distribution (4.17), the particle will spendmore time –

and will yield more samples – in positions with lower energies, and this effect
becomes more pronounced if the temperature is low. At temperature T¼ 0, only
jumps to lower or same energies will be accepted, so the particle ends up, possibly
after a long time, in a global energy minimum. The Metropolis–Hastings algorithm
can be used to (i) sample from given probability distributions and (ii) to minimize
arbitrary objective functions f(x), which replace the energy function E(x).

1. The Metropolis–Hastings algorithm at fixed temperature can be used to sample
the posterior distribution (4.8) in Bayesian statistics: we set kBT¼ 1 and choose
E(q)¼ p(y|q)p(q), ignoring the constant factor 1/p(y). From the resulting samples,
we can compute, for instance, the posterior mean values and variances of
individual parameters qi.

2. For simulated annealing [17], E(x) is replaced by a function to be minimized, the
factor kB is set to 1, and the temperature is varied during the optimization process.
Simulated annealing starts with a high temperature, which is then continuously
lowered during the sampling process. If the temperature decrease is slow enough,
the system will end up in almost all cases (i.e., with probability 1) in a global
optimum. In practice, the temperature has to be decreased faster, so convergence
to a global optimum is not guaranteed.

4.2.7.4 Genetic Algorithms
Genetic algorithms like differential evolution [18] are inspired by the process of
mutation and selection occurring in the evolution of species. Instead of improving
a single possible solution (as in simulated annealing), genetic algorithms simulate
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an entire population of possible solutions (called �individuals�) with subsequent
generations. In each generation, the fitness of every individual is evaluated. Indi-
viduals with good scores (as compared to the other individuals in the population) can
have offspring, which then forms the following generation. In addition, mutations
(i.e., small random changes) or crossover (random exchange of properties between
individuals) allow the population to explore larger regions of the parameter space. For
problems with additional constraints, stochastic ranking [19] provides an efficient
way to trade the objective function against the need to obey the constraints.

4.3
Reduction and Coupling of Models

Summary

The aim in model reduction is to simplify complex models, i.e., to capture their key
dynamical properties with fewer equations and parameters. This facilitates under-
standing, numerical and analytical calculations, andmodel fitting. A reducedmodel
has to emulate the behavior of relevant variables under relevant conditions and on
the relevant time scale. To reduce a model, elements can be omitted, lumped, or
replaced by effective descriptions, and global model behavior can be approximated
by global modes or simplified black-box models. Important simplifying concepts
like quasi-equilibrium or quasi-steady state can be justified by a distinction between
fast and slow processes. Once models for parts of the cell have been established,
they may be combined to form move complex models, which may show new
emergent behavior.

Biochemical systems are complex, but in order to understand them, we can use
simple mental pictures that neglect many details and show processes as if they
happened in isolation. Simplicity is just a matter of perspective: if we average over
many microscopic events, we will obtain a smooth behavior of macroscopic sub-
stance concentrations. If we observe a fast complex system over a long period of time,
its effective average behavior may look simple. In computational models, we can
choose a level of detail that suits our needs: we may consider smaller or
larger pathways and simplify, lump, or disregard substances and reactions. We can
do this either from the very beginning by model assumptions, or we can simplify
an existing model by model reduction. If a model turns out to be too simple, we may
zoom into the system and acknowledge details that we neglected before, or zoom out
and include more parts of the environment into the model.

4.3.1
Model Simplification

Any biochemicalmodel represents a compromise between biological complexity and
practical simplicity. Its form will depend on data and biological knowledge available
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and on the questions to be answered. Small models provide several advantages: it is
easier to understand them, the effort for simulations is lower, and with fewer
parameters, model fitting is easier and more reliable.
Differentways to simplify a givenmodel [20] are shown schematically inFigure 4.8.

A basic rule for keeping models simple is to omit all elements that have little
influence on the model predictions, for instance, reactions with very small rates.
Often, elements cannot be omitted, but they can be described in a simplified or
effective manner for conditions or time scales of interest. Examples are constant
concentrations or flux ratios, effective kinetic laws fitted to measurements, or
linearization of nonlinear kinetics that hold within the physiological range.
Such simplifications can speed upmodel building and simulations because fewer

equations, variables, and parameters are needed, differential equations can be
replaced by algebraic equations, and stiff differential equations can be avoided. All
simplifications, though, have to be justified: a reduced model should yield a good
approximation of the original model for certain quantities of interest, a certain time
scale, and certain conditions (a range of parameter values, the vicinity of a certain
steady state, or a certain qualitative behavior under study).
Even the most detailed biochemical model is still a simplified, reduced picture of

a much more complex reality. Therefore, considerations about model reduction

Omit(a)

Lump

(b) (c)Prescribe

Global modesBlack box model

Simplify expressions

(f)(e)(d)

Figure 4.8 Simplifications in biochemical
models. The scheme shows a branched pathway
of metabolites (circles) and reactions (arrows).
(a) Omitting substances or reactions.
(b) Predefining the values of concentrations or
fluxes or relations between them. (c) Simplifying
the mathematical expressions (e.g., omitting
terms in a kinetic law, using simplified kinetic
laws [21], neglecting insensitive parameters
[22]). (d) Lumping the substances, for instance,
similar metabolites, protonation states of a
metabolite, or metabolite concentrations in

different compartments. Likewise, subsequent
reactions in a pathway or elementary steps in a
reaction can be replaced by a single reaction of
the same velocity; for parallel reactions, like the
action of isoenzymes, the velocities are summed
up; for the two directions of a reaction, the
velocities are subtracted. (e) Replacing the
model parts by a dynamic black-box model that
mimics the input–output behavior [23]. (f)
Describing the dynamic behavior by global
modes (e.g., elementary flux modes or
eigenmodes of the Jacobian).
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do not only help to simplify existing models, but also to justify common basic model
assumptions and our use of mental models in general.

4.3.2
Tacit Model Assumptions

Mathematical models describe biological systems in two complementary ways: in a
positive way, by how processes are modeled and in a negative way, by omission of
processes, simplification of mechanisms, and the decision to treat certain quantities
as constant. The positive facts about the systemare stated explicitly, while the negative
ones – which are just as important – remain hidden in the model assumptions.
Arguably, the most important negative statement is that a system as a whole can be
seen as amodule, that is, its environment – e.g., the cell surrounding a pathway – can
be neglected. Experiments test both kinds of statements at the same time, and they
should be designed from the very beginning such that the simplifying model
assumptions will later be justified.

Example 4.2: Stabilization by negative feedback

Consider a simple kinetic model [24]

ds
dt
¼ a

1þ s=KI
�b s ð4:18Þ

of self-inhibited protein production (with the protein level s, maximal production
rate a, inhibition constant KI, and degradation constant b). Themodel predicts that
the protein level can be stabilized against noise by self-inhibition.Without inhibition
(KI !¥), the Jacobian of the system reads A¼�b; with inhibition, the Jacobian
A¼�aKI/(KI þ sst)2� b has a larger negative value, so s becomes more stable
against small random perturbations. Becskei and Serrano [24] have approved
this stabilization effect in an experiment with synthetic genetic circuits.
However, the experiment does not only test the model (4.18) itself – the positive

statements –, but also all kinds of simplifying assumptions made: (i) in the model,
details of transcription and translation, as well as stochastic effects due to small
particle numbers, are ignored; (ii) the behavior of the protein level s is entirely
determined by s itself and interactions with other processes are neglected; (iii) the
model parameters are assumed to be constantwhile in reality, theymay depend on the
cell state, be noisy or influenced by s itself, thus forming an additional feedback loop.

The model in Example 4.2 predicts stabilization for an isolated, deterministic
system, but only the experiment can prove that an actual biochemical implementation
of this loop, embedded in a living cell, shows the predicted behavior. Moreover, the
successfulpredictionshowsthat thebehavior is robustagainst typicalperturbationsthat
would occur in living cells. All this supports the working hypothesis that a subsystem
can be modeled at all without considering the complexity of the surrounding cell.
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4.3.3
Reduction of Fast Processes

If processes take place on different time scales (see Chapter 1), this may allow us to
reduce the number of differential equations. In gene expression, for instance,
binding and unbinding of transcription factors can happen on the order of micro-
seconds, changes in transcription factor activity on the order of minutes, while the
culture conditions may change on the order of hours. In a model, we may use a fast
equilibrium or time averages for transcription factor binding, a dynamical model
for signal transduction and gene expression, and constant values for the culture
conditions.
The characteristic time scale of biochemical processes concerns both their

internal dynamics (e.g., relaxation to steady state, periodic oscillations) and their
susceptibility to external fluctuations. Cellular processes occur on a wide range of
time scales from microseconds to hours, and also the time scale of enzymatic
reactions can differ strongly due to the very different enzyme concentrations and
kinetic constants.

4.3.3.1 Response Time
One way to define time constants is by observing how a system relaxes to steady
state, like in the following example.We consider a substance that is produced at a rate
v and linearly degraded with rate constant l; its concentration s satisfies the rate
equation

dsðtÞ
dt
¼ vðtÞ�lsðtÞ: ð4:19Þ

If the production rate v is constant, then the concentration s will relax from an initial
value s(0)¼ s0 to its steady-state value sst¼ v/l according to

sðtÞ ¼ sst þ ðs0�sstÞe�lt: ð4:20Þ
We can define the response time t¼ 1/l as the time at which the initial deviation
Ds(t)¼ sst from the steady state has decreased by a factor 1/e. The response time is
closely related to the response half time t(1/2)¼ ln 2/l, at which half of the relaxation
has been reached.

4.3.3.2 Time-Scale Separation
In numerical simulations, a single fast process, e.g., a rapid conversion between two
substances A@B (as in Figure 4.9(b)), can force the numerical solver to use very
small integration steps. If the samemodel also contains slow processes, simulations
have to cover a long time scale, and the numerical effort can become enormous.
However, fast reactions can be approximated rather easily because the concentration
ratio sB/sA will always be close to the equilibrium constant. If we approximate this by
an exact equilibrium in every moment in time, we can replace the reaction by the
algebraic relation sB/sA¼Keq and get rid of the stiff differential equation that caused
the big numerical effort.
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The mathematical justification for such an effective algebraic equation is illustrat-
ed in Figure 4.9: In state space, fast processes may rapidly move the system state
toward a submanifold, on which certain relationships hold (e.g., an equilibrium
between different concentrations). After an initial relaxation phase, the system state
will changemore slowly and remain close to thismanifold. In the approximation, the
system moves exactly within the manifold. In general, there may be a hierarchy of
such manifolds which are related to different time scales [25].
Time-scale arguments canbeused to justify various kinds of simplifications: (i) fast

movements in molecular dynamics average out behind slow changes of the ther-
modynamic ensemble (e.g., fast jittering movements versus slow conformation
changes in proteins). (ii) Fast diffusion leads to homogeneous concentrations,
so spatial structure can be neglected. (iii) In a quasi-equilibrium as considered
above, the ratios between substance concentrations are replaced by the equilibrium
constant. (iv) In a quasi-steady state, the concentration of a substance may be
determined by its production rate. The latter two approximations can be used, for
instance, to justify the Michaelis–Menten rate law (see Section 2.1.3).

Example 4.3: Quasi-steady-state and quasi-equilibrium

Weshall illustratetwotypesofapproximation,quasi-steadystateandquasi-equilibrium,
with a simple model of upper glycolysis (see Section 3.1.2).
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Figure 4.9 Time-scale separation. (a) The
dynamics of a system can be illustrated by its
trajectories in state space. If the system state
is attracted by a submanifold (in the two-
dimensional case, a curve), trajectories starting
from any point (red) will rapidly approach this
manifold (blue). Later, the system will move
slowly on the manifold, satisfying an algebraic
equation. (b) A small reaction system with

different time scales. Fast conversion between
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changes the sum saþ sb. (c) Schematic
trajectories for the system shown in (b). For any
initial conditions, the concentrations sA and sB
will rapidly approach the line sB/sA¼Keq and then
move slowly toward the steady state.
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Glucose (GLC) is taken up at a rate v0 and converted subsequently into glucose-
6-phosphate (G6P), fructose-6-phosphate (F6P), and fructose-1,6-bisphosphate
(FBP), which is then consumed by the following steps of glycolysis. In this model,
the cofactors ATP and ADP have fixed concentrations. Withmass-action kinetics and
a reversible reaction between G6P and F6P, the rate equations read:

ds1
dt
¼ v0�k1 sA s1 ð4:21Þ

ds2
dt
¼ k1 sA s1�kþ 2 s2þ k�2 s3 ð4:22Þ

ds3
dt
¼ kþ 2 s2�k�2 s3�k3 sA s3 ð4:23Þ

ds4
dt
¼ k3 sA s3�k4 s4: ð4:24Þ

The numbers refer to the metabolites and reactions in the scheme and sA denotes
the constant ATP concentration. We first assume that all reactions take place on a
similar time scale, setting k+2¼ 2 and all other rate constants and the ATP
concentration to a value of 1 (arbitrary units). Figure 4.10(a) shows simulated
concentration curves of GLC, G6P, F6P, and FBP; the initial concentrations are
chosen to be zero. For the first 5 time units, the influx has a value of v0¼ 2, and
the intermediate levels rise one after the other. Then, the influx is reduced to v0¼ 1,
and the levels decrease again.
How would the system behave if either the first or the second reaction was very

fast? The two scenarios can be approximated, respectively, by a quasi-steady-state
for glucose or a quasi-equilibrium between G6P and F6P.
If k1 is increased to a value of 5 (Figure 4.10(b)), glucose is rapidly consumed, so

its steady-state level will stay low; due to its high turnover, glucose will also adapt
almost instantaneously to changes of the input flux. This behavior can be ap-
proximated by a quasi-steady-state approximation for the slow time scale: we
replace the glucose concentration in each time point by the steady-state value
sst1 ðtÞ ¼ v0ðtÞ=ðk1sAÞ based on the current value of v0(t). This algebraic equation
replaces the differential equation (4.21) for s1. Formally, we could obtain the same
result by setting the left-hand side of the differential equation to zero.
Next, we assume a rapid and reversible conversion between the hexoses G6P

and F6P.We increase both rate constants at the same time by a large factor (kþ 2¼ 10
and k�2¼ 5 in Figure 4.10(c)) while keeping their ratio keq¼ kþ 2/k�2 fixed: in the
simulation, the ratio of F6P toG6P levels rapidly approaches the equilibrium constant
[F6P]/[G6P]¼ s3/s2¼ Keq. In the quasi-equilibrium approximation, we assume that
this ratio is exactly maintained in everymoment. By adding Eqs. (4.22) and (4.23), we
obtain the equation

ds2þ 3

dt
¼ dðs2þ s3Þ

dt
¼ k1 sA s1�k3 sA s3: ð4:25Þ

Given s2þ 3 and Keq, we can substitute s3¼ s2þ 3Keq/(1 þ Keq) in Eq. (4.24) and
obtain a simplified differential equation system in which the fast reaction does not
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appear any more. The two differential equations for s2 or s3 are replaced by a single
differential equation (for the sum of the two variables) and an algebraic equation
s3/s2¼ Keq for the concentration ratio.

4.3.4
Global Model Reduction

If the state of a system is constrained to a submanifold in state space (as shown in
Figure 4.9(a)), its movement on the manifold can be described by a smaller number
of variables. Such constraints can, for instance, arise from linear conservation
relations between metabolite concentrations (see Section 2.2.4): If rows of the
stoichiometric matrix N are linearly dependent, the system state can be described
by a number of independent metabolite concentrations (effective variables), from
which all other concentrations could be computed by algebraic equations. The vector
of metabolite concentrations is confined to a linear subspace. Other constraints may
arise from fast processes that effectively lead to algebraic relationships, as we saw in
the quasi-steady-state and quasi-equilibrium approximation.
The effective variables do not have to describe individual substances: For a

general linear manifold, they may consist of linear combinations of all substance
concentrations, representing global modes of the system�s dynamics. Such global
modes appear, for instance, in metabolic systems that are linearized around a
steady state: Each mode will represent a pattern of metabolite levels (actually,
their deviations from steady state), which follows a certain temporal dynamics
(e.g., exponential relaxation). Such modes are comparable to harmonics on a
guitar string, which display spatial patterns with a characteristic temporal behav-
ior. Actual movements of the string can be obtained by linear superposition of
these modes.
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Figure 4.10 Simulation results for the model of
upper glycolysis. (a) Results from the original
model, showing levels of GLC, G6P, F6P, and
FBP (abbreviations see text, time and
concentrations measured in arbitrary units).
(b) Results from the model with fast glucose

turnover k1¼ 5 (solid lines) and the quasi-steady-
state approximation (broken lines). (c) Results
from the model with fast reversible conversion
G6P$ F6P (solid lines), parameters kþ 2¼ 10,
k�2¼ 5 and the quasi-equilibriumapproximation
(broken lines).
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4.3.4.1 Linearized Biochemical Models
Most biochemical models are nonlinear; one way to simplify them is by linearizing
them around a steady state. Consider a kinetic model (see Section 2.3.1)

dv
dt
¼ N vðs; pÞ ð4:26Þ

with stoichiometric matrix N, reaction velocity vector v, and parameter vector p. We
assume that for given parameter sets p, the systemshows a stable steady state sst(p). To
linearize Eq. (4.26), we determine the steady state sst0 ¼ sstðp0Þ at a reference
parameter vector p0 and compute the elasticity matrices ~e ¼ qv=qs and ~p ¼ qv=qp
(see Chapter 2). For small deviations of concentrations xðtÞ ¼ sðtÞ�sst0 and para-
meters u(t)¼ p(t)� p0, linearizing Eq. (4.26) leads to

dxðtÞ
dt
¼ AxðtÞ þ B uðtÞ ð4:27Þ

with the Jacobian A ¼ N ~e and the matrix B ¼ N ~p. In general, the approximation
(4.27) holds only close to the expansion point, so for larger deviations u or x, the
accuracy decreases. In addition, linearized models may not be able to reproduce
certain kinds of dynamic behavior, e.g., a stable limit cycle.
Biochemical systems show characteristic responses to external perturbations, so

we can try to mimic complex models by linearized black-box models with the same
input–output relation. An important special case are small perturbations of a stable
system: if parameter perturbations are slow, the entire system will follow them in a
quasi-steady-state. To linear order, the system�s input–output relation y(u) (for
parameter deviations u and steady-state output variables like fluxes or concentra-
tions) can be approximated by the linear response

Dy � ~R
y
pDu ð4:28Þ

with the metabolic response matrix ~R
y
p. The response to oscillating parameter

perturbations [26, 27] and the response of transient behavior to stationary perturba-
tions [28] can be treated accordingly.

4.3.4.2 Linear Relaxation Modes
WithEq. (4.27),we can express themodel behavior as a superposition of globalmodes
zj, each corresponding to one of the eigenvectors ofA (see Section 2.3.1). For constant
system parameters (u¼ 0), small deviations x ¼ s�sst0 follow approximately

dx
dt
¼ Ax: ð4:29Þ

In the following, we assume that the Jacobian is diagonalizable, A¼QLQ�1 with a
diagonal matrix L¼Dg(li) and a transformation matrix Q¼ {qji}. Furthermore,
we assume that all its eigenvalues li have negative (or, possibly, vanishing) real parts.
We introduce the transformed vector z¼Q�1x, which follows the equation

dz
dt
¼ Lz; ð4:30Þ
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so whenever A is diagonalizable, we obtain an individual equation

d
dt
zj ¼ lj zj ð4:31Þ

for each global mode zj. The behavior of the original variables xi can be
written as

xiðtÞ ¼
X
j

qij zjðtÞ ¼
X
j

qij zjð0Þe�g j t ð4:32Þ

with the initial value z(0)¼Q�1x(0).
The different modes can be characterized by response times as introduced above. If

the eigenvalue li is a real number, zj relaxes exponentially to the value 0 with a response
time tj¼ 1/lj. A pair of complex conjugated eigenvalues, in contrast, leads to a pair of
oscillatorymodeswith time constant ti¼ 1/Re(li). An eigenvalue li¼ 0 (corresponding
to an infinitely slow mode) can arise, for instance, from linear conservation relations.
To simplify the system, we can neglect fast global modes (with small tj) in the sum

(4.32), assuming that they will relax immediately. In metabolic network models, this
will reduce the accuracy at fast time scales, but none of the metabolites or reactions
will be omitted from the model. The system state is projected to the space of slow
modes and the number of variables is effectively reduced.
Even if A cannot be diagonalized, the state space can still be split into subspaces

related to fast and slow dynamics: by neglecting the fast subspace, the number of
variables can then be reduced adaptively during computer simulations [29]. Powerful
methods for linear model reduction like balanced truncation [23, 30] have been
developed in control engineering (see the web supplement).

4.3.5
Coupled Systems and Emergent Behavior

All biological systems, from organisms down to cellular pathways, are embedded in
larger environments that influence their dynamics. A metabolic pathway, for
instance, is part of a larger network and coupled to a transcription network that
adjusts its enzyme levels. For the dynamics of such a system, it can make a big
difference if the environment�s state is kept fixed or if both systems interact
dynamically. In our terminology, a system is either studied in isolation (with fixed
or controlled environment) or coupled to a dynamic environment. This fundamental
distinction does not only hold for models, but also for experimental systems: in an in
vitro enzyme assay, for instance, conditions like pH or the levels of cofactors can be
experimentally controlled; in living cells, these values may be regulated dynamically,
usually in an unknown manner.
When systems are coupled, new dynamic behavior can emerge. Single yeast cells,

for instance, can communicate by the exchange of chemicals: Such interactions can
lead, for instance, to synchronized glycolytic oscillations, which have been observed
both in experiments and in models [31]. The following two examples illustrate the
difference between isolated and coupled systems.
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Example 4.4: Bistable switch

Let us consider two genes X and Y that mutually inhibit each other (Figure 4.11); we
describe their levels x and y by the differential equation model

dx
dt
¼ f ðx; yÞ

dy
dt
¼ gðx; yÞ:

ð4:33Þ

By setting the second equation to zero and solving for y, we obtain the steady-state
valueof y as a functionof x. The curve yst(x) inFigure 4.11(a) is called thenullclineof y.
Likewise, we obtain another nullcline xst(y) from the first equation. These nullclines
represent response curves for the individual systems. When both systems are
coupled, both steady-state requirements yst¼ f(xst) and xst¼ g(yst) have to be
satisfied at the same time. We obtain three fixed points, two of which are stable,
as indicated by the slopes of the nullclines. Due to the positive feedback loop, a
bistable switch has emerged. The bistability is not a property of the individual genes
X and Y – it is an systemic property which is only caused by their coupling.

Example 4.5: Reaction velocity and steady-state flux

Figure 4.12 shows two coupled chemical reactions. To study the first reaction in
isolation, we fix the concentrations of substrate X and product Y. The reaction rate is
given by the kinetic law v1(sX, sY, E1), and the response to a small increase of enzyme
activity is described by the elasticity coefficient ~pv1E1 ¼ qv1=qE1. As the enzyme activity
increases, the reaction rate can be made arbitrarily large.
Alternatively, we can study the stationary flux in the two coupled reactions, with the

levels of X and Z fixed and the level of Y determined by a steady-state requirement.
Now the rate of the first reaction equals the steady-state flux j(x, z, E1, E2) and the
effect of an increased enzyme activity is given by a response coefficient ~R

j
E1 ¼ qj=qE1.

(a) (b)

yy

xx

YX YX

Figure 4.11 Bistability can emerge from mutual inhibition. (a) A
gene level y ismodeled in isolationwith another gene level x acting
as a regulatory input. The steady-state level yst (blue) depends on
the given value of x. (b) Two mutually interacting genes show
bistability as an emergent property, with two stable fixed points
(black dots) and one unstable fixed point (white dot) at the
intersection of the two nullclines.
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In this setting, the first enzyme will have a limited effect on the reaction rate: As its
activity increases, the enzyme will lose its control and the reaction flux will be mostly
controlled by the second enzyme.

The two approaches – whether isolated and coupled dynamics – are character-
istic for two contrary views on complex systems. Reductionism studies the parts of
a system in isolation and great detail. In this view, which is dominant in molecular
biology and biochemistry, the global behavior of a system is explained in terms
of interactions between the system�s parts, and the dynamics is explained in terms
of causal chains. Holism, on the contrary, emphasizes the fact that new dynamic
behavior can emerge from the coupling of subsystems. Instead of tracing indi-
vidual causal effects, it emphasizes how the global system dynamics responds to
changes of external conditions.

4.3.6
Modeling of Coupled Systems

4.3.6.1 Bottom-Up and Top-Down Modeling
According to the concepts of reductionism and holism, there are two complementary
modeling approaches, called bottom-up and top-downmodeling; both proceed from
simplicity to complexity, but in very different ways. In bottom-up modeling [32, 33],
one studies elementary processes in isolation and aggregates them to a model. An
example is the glycolysis model of Teusink et al. [32] that was built from kinetic rate
laws measured in vitro. In vitromeasurements of enzyme kinetics allow for an exact
characterization and manipulation of quantitative parameters. A metabolic pathway
model was constructed bymerging the reactions.Without further tuning, it yielded a
fairly plausible steady-state description of glycolysis. In top-down modeling, on the
contrary, a model is built by refining a coarse-grained model of the entire system. If
the model structure is biologically reasonable, such a model can be expected to yield
fairly gooddatafits, but there is no general guarantee that it will remain valid as part of
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Figure 4.12 Elasticities and response
coefficients describe local and global response to
external changes. (a) Chain of two reactions with
externalmetabolites X andZ and an intermediate
Y. (b) The reaction rates v1 (red) and v2 (blue)
depend on the intermediate level y. A steady state
requires that both rates are identical (black dot).
If v1 is increased – e.g, by an increase of the

external substrate X (broken red line), the steady-
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steady-state flux increase ~R

j
xDx (depending on

the response coefficient ~R
j
x).

174j 4 Model Fitting



a merged model. The two approaches pursue different goals: A bottom-up model is
constructed to be locally correct (describing individual reactions by correct rate laws
and parameters), while a top-downmodel, on the other hand, is optimized for a good
global fit to in vivo behavior. In a model of limited size, it is unlikely that both
requirements will be fulfilled at the same time.

4.3.6.2 Modeling the System Boundary
When building a biochemical model, we distinguish between a system of interest
(which is explicitly modeled) and its environment, which is either not modeled or
described only very roughly. Although this distinction is artificial, it cannot be
avoided. The communicating quantities on the boundary may be external substance
levels or fluxes, and their values have to be specified by model assumptions.
If theboundaryvariablesofasystemarekeptfixed, thesystemismodeledasif itwasin

isolation. To ensure that this assumption is at least approximately justified, one should
carefully choose the experimental system and the description of communicating
variables. The system boundary should be chosen such that the interactions are weak,
constant in time,oraverageout (because they are fast or random)andcan thusbeburied
in the parameters. If the communicating variables are supposed to change in time, time
series of the communicating variables can be obtained from experiments or from a
separate environment model and be inserted into the model as given, time-dependent
functions.Alternatively, theenvironmentcanbedescribedaspartof themodel, eitherby
effective algebraic relationships [34] or by simplified dynamic black-box models [23].

4.3.6.3 Coupling of Submodels
The coupling of several submodels (often called �modules�) works quite similarly.
The communicating variables connect the subsystems, but they also shield them from
each other: If their temporal behavior was known, then the dynamics of eachmodule
could be computed without referring to the othermodules. If the influences between
modules form an acyclic graph, we can first simulate the dynamics of upstream
modules, compute their outputs, and use them later as inputs for the downstream
modules. If the coupling involves feedback loops, all modules need to be simulated
together. We will come back to this point in Section 8.3.4.
An important consequence is thatmetabolic pathways can be driven by both supply

anddemand [35]. In a chain of chemical reactions, the steady-stateflux depends on the
concentration of the initial substrate. However, if the reactions are reversible or if
enzyme activities are controlled by metabolite concentrations, also the end product
may exert control on the flux. Supply–demand analysis [35] dissects metabolism into
individual blocks, which are coupled bymatching their supply and demand variables.
The elasticities of supply and demand, which are experimentally measurable proper-
ties of the individual blocks, are then used to describe the behavior, control, and
regulation of metabolism.

4.3.6.4 Model Merging
Asmore andmoremodels become available (see Section 3.4.4), it is a tempting idea to
build cell models by merging preexisting models of subsystems [36–39]. As the
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modelscanoverlapintheirelements(e.g.,substancesorreactionsdescribed),elements
from different models have to be matched to each other, as shown in Figure 4.13.
Model merging is based on the reductionist assumption that a mechanistic model

will remain correct in different environments. However, bothmanual and computer-
assisted merging (e.g., with SemanticSBML, see [38] and Chapter 17) pose various
kinds of challenges [39]: (i) Model elements (variables, parameters, chemical reac-
tions) have to be compared according to their biological meaning, which requires
a clear description by (possibly computer-readable) annotations (e.g., MIRIAM-
compliant RDF annotations [40]). (ii) Units must be compared and unified. (iii)
Explicit conflicts between themodels – e.g., different kinetics for the same reaction –

have to be detected and resolved. (iv) Implicit conflicts may arise if the input models
make contradicting assumptions or obey contradicting constraints (e.g., thermody-
namic relationships between kinetic parameters). (v) If the model parameters have
been determined by global fits, they possibly need to be refitted in themergedmodel.
Some of these difficulties can be avoided if submodels are already designed with a
common nomenclature and modeling framework. Model merging is greatly facili-
tated by standardization efforts for experiments and model building [41].

4.4
Model Selection

Summary

Mathematical models have to meet various requirements: they should fit experi-
mental data, allow for prediction of biological behavior, represent complex biological
mechanisms under study, and describe them in a simple, understandable form.

Merged model

Model 1

Model 2

A

X

YXA B

X B

u v

V

Figure 4.13 Merging of models. Two models (top and center) are
merged to a single model (bottom) containing all model elements.
Symbols represent model elements, for instance, substances and
reactions. For merging, model elements are aligned (red dashed
lines) according to their biological meaning as indicated by
annotations (not shown). A simple name comparison would be
unreliable because models can use different naming conventions.
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Systems biology models are often refined in iterative cycles until they agree with all
relevant data. Alternative models may include different levels of detail or represent
different biological hypotheses, and statistical model selection can help to choose
between them. Complex models tend to overfit the data, so for choosing a reliable
model, the number of free model parameters needs to be restricted, e.g., by
likelihood ratio tests, by selection criteria like the Akaike criterion, or by Bayesian
model selection.

One of themain issues inmathematical modeling is to choose between alternative
model structures and to justify this choice. It is often arguable which biological
elements need to be considered. Models may cover different cellular subsystems,
different components or interactions within a subsystem (e.g., feedback interac-
tions), different descriptions of the same process (e.g., different kinetic laws, fixed or
variable concentrations), and different levels of detail (subprocesses or time scales).
Alternative versions of model parts can lead to a combinatorial explosion of model
variants, so we need to rule out models that are incorrect or too complicated [42, 43].
With limited and inaccurate data, we will not be able to pinpoint a single very detailed
model, but statistical criteria can at least tell us which of the models are best
supported by the data.

4.4.1
What is a Good Model?

A good model need not describe a biological system in all details. Borges writes in
a story [44]: �In that empire, the art of cartography attained such perfection that the
map of a single province occupied the entirety of a city, and the map of the empire,
the entirety of a province. In time, those unconscionablemaps no longer satisfied, and
the cartographers guilds struck amap of the empirewhose sizewas that of the empire,
and which coincided point for point with it.�
Systems biology models range from very simple to very complex maps of the cell,

but just like usual maps, they never become an exact copy of the biological system. If
they did, they would be almost as hard to understand as the biological system itself.
Or, as George Box put it [45], �Essentially, all models are wrong, but some are useful.�
But – useful for what? As models are made for different purposes, they have to meet
different requirements (see Figure 4.14):

1: Good data fit

2: Good prediction

model and data:
Agreement between 

biological system:
Represent the

3: Biological details

principles
4: Reduce to key

Simplicity

Complexity

Figure 4.14 Possible requirements for a good model.
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1. In data fitting, we aim to describe individual data points by a general mathe-
matical function. Instead of storing many data pairs (x, y) that lie on a curve, we
can store a few curve parameters (e.g., offset and slope for a straight line). If the
points are not exactly on a curve, we may attribute the discrepancy between
model and data to statistical errors in the measurement. Given a model
structure, we can adjust the model parameters such as to optimize the fit,
e.g., by minimizing the sum of squared residuals (SSR) (see Section 4.2).
Fitting equally applies to dynamical models, which effectively define a mapping
between parameters and data curves.

2. When used for prediction, a model is supposed to state general relationships
between measured quantities that will also hold for future observations: In
the language of statistical learning, the model should generalize well to new
data.

3. A detailed mechanistic model is supposed to describe processes �as they happen in
reality.� Of course, the description of an entire cell will never be complete down to
molecular or lower levels. In practice, mechanistic models will focus on parts of
the cell only and use simplifying assumptions and model reduction to simplify
them to a tractable level.

4. To emphasize the key principles of a biological process, amodel needs to be as simple
as possible. Simplicity is especially important if a model is supposed to serve as
a didactic or prototypic example. This also holds for experimental model systems,
e.g., the Lac operon as a model for microbial gene regulation.

These properties are partially interrelated. A good data fit supports the hypothesis
that amodel is biologically correct and covers the key features of a system.But – it does
not prove it: a complex model – even with an implausible structure – may achieve
betterfits than a simpler, biologically plausiblemodel.As a rule of thumb, amodelwith
many freeparametersmayfit givendatamore easily (�With four parameters I canfit an
elephant, and with five I can make him wiggle his trunk.� J. von Neumann, quoted in
[46]). But as the fit becomes better and better, the average amount of experimental
information per parameter decreases, so the parameter estimates and predictions
from the model become poorly determined. Such overfitting is a notorious problem
whenmany freeparameters arefitted to fewdatapoints or if a largenumber ofpossible
models is prescreened for good data fits (Freedman�s paradox [47]). It can be detected
and avoided, though, by making proper use of statistics.

4.4.2
Statistical Tests and Model Selection

Let us suppose that a number of alternative models have been proposed for a
biological process.We intend to choose between thembased on experimental data, in
particular, time series of substance concentrations.
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Example 4.6: Reversible or irreversible reaction?

As a running example, wewill consider two alternativemodels for a chemical reaction
S$P. The first model (�A�) assumes mass-action kinetics with rate constants kþ
and k� and a fixed product concentration c. The substrate concentration s follows
the rate equation

ds
dt
¼ �kþ sþ k�c: ð4:34Þ

The second model (�B�) assumes that the reaction is irreversible, i.e., the rate
constant k� vanishes. For the concentration of S, the two models predict a
temporal behavior

Model A : sðtÞ ¼ sst þ ðs0�sstÞ e�kþt ð4:35Þ

Model B : sðtÞ ¼ s0 e
�kþt ð4:36Þ

with the initial concentration s0 and the steady-state concentration sst¼ c k�/k+ in
model A. The solution of model A depends on the values of k+, k�, s0, and c.
However, the parameters k� and c only appear in the form of a product a¼ k�c,
which means that they are not identifiable individually (see 4.2.3). For parameter
estimation and model selection, we keep three model parameters, k+, s0, and a.
Model B contains only two parameters, k+ and s0.
In model selection, we compare the two models to experimental data, e.g., to a

concentration time series for S consisting of triples (ti, yi,si) for the ithmeasurement,
each containing a time point ti, a measured concentration value yi, and a standard
error si. By the approach of model selection, we aim to find out if there is a
considerable backward flux from P to S.

We can choose between competing models by statistical tests and model selection
criteria. In statistical tests, we compare a more complex model to a simpler back-
ground model. According to the null hypothesis, both models perform equally well.
In the test, we favor the background model unless it statistically contradicts the
observed data. In this case, we would conclude that the data support the more
complexmodel. A test at a confidence level awill ensure that if the null hypothesis is
correct, there is only an a% chance that we wrongly reject it.
Alternatively, several candidate models can be compared by a selection criterion

[48–51]. Selection criteria are mathematical scoring functions that balance agree-
ment with experimental data against model complexity. To compensate for the
advantage of complex models in fitting large numbers of free parameters in the
model are punished. Selection criteria can be used to rank the models, choose
between them, and to weight them in averaging. In model selection, we choose
between model structures just as we choose between parameter values in para-
meter fitting: In both cases, we intend to find a model that agrees with biological
knowledge and that matches experimental data. The two tasks are interrelated:
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In parameter estimation, parameter values are determined for a given model
structure, while model selection often involves a parameter estimation run for
each of the candidate models.

4.4.3
Maximum-Likelihood Estimation and c2-Test

We can judge the quality of a model by comparing its predictions to experimental
data. The structure and parameters of a model can be scored by its likelihood (see
Chapter 13), the probability that the model assigns to actual observations. Consider
the model �Tomorrow, the sun will shine with 80% probability�: If sunshine is
observed, themodel has a likelihood of 0.8.Mathematically, the likelihood for amodel
or parameter set q is defined as L(q|y)¼ p(y|q), that is, the conditional probability to
observe the data y given the model.
To compute likelihood values for biochemical models, we need to relate themodel

predictions to experimental data. In a simple statistical model, we regard the
experimental data yi as a sum

yi ¼ xiðqÞ þ xi ð4:37Þ
of the model results and measurement errors xi, described by independent
Gaussian random variables with mean 0 and width si. The subscript i can refer
to both substances and time points. The assumption of additive Gaussian errors
greatly simplifies calculations, but it need not hold in all cases. With Eq. (4.37) and
the probability density pxi(x), the likelihood L(q|y) can be written as a function of
the model parameters (see Eq. (4.5)). For further calculations, we consider the
expression

�2 log LðqjyÞ ¼ �2 log pðyjqÞ ¼ �2
Xn
i¼1

log pxiðyiðtÞ�xiðqÞÞ: ð4:38Þ

By inserting the Gaussian probability density px(x)� exp(�x2/(2s2)), we obtain

�2 log LðqjyÞ ¼
Xn
i¼1

ðyi�xiðqÞÞ2
s2
i

þ const: ð4:39Þ

The quality of the model (4.37) can be judged from the sum in expression (4.39),
the weighted sum of squared residuals (wSSR). If our model is correct, the yi will
be independent Gaussian random variables with means xi and variances s2

i , so
the weighted SSR will follow a c2-distribution with n degrees of freedom. On the
contrary, if the result of (4.39) for a given model and given data falls in the upper
5% quantile of the c2n-distribution, the model can be rejected on a 5% confidence
level. We would conclude in this case that the model is wrong. If parameters
have been fitted before, the number of degrees of freedom in the c2-distribution
should be reduced to account for possible overfitting. In maximum-likelihood
estimation, we determine a parameter set q̂ðyÞ that maximizes the likelihood
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p(y|q) for a given data set y (see 4.2.2.1): The resulting likelihood value measures
the goodness of fit.
The likelihood can also be used to choose between different model structures. For

instance, the above statement A, �Tomorrow, the sunwill shinewith 80%probability�
can be compared to the statement B, �Tomorrow, the sun will shine with 50 percent
probability�. If sunshine has been observed, statement Awill have a higher likelihood
(Prob(data|A)¼ 0.8) than statement B, (Prob(data|B)¼ 0.5), and should be chosen
if likelihood is used to select models. Biochemical models can be selected in the
same manner, but only if their parameters have been fixed in advance, as we shall
explain now.

4.4.4
Overfitting

If models were selected by their maximized likelihood (and not by the likelihood
arising from predefined, fixed parameters) overfitting could severely distort
the selection of models. Consider a statistical model with true parameters q and
data y: The maximum-likelihood estimator q̂ðyÞ will lead to a higher likelihood
Lðq̂ðyÞjyÞ>LðqjyÞ than the true parameter set q just because it was optimized for high
likelihood for the observed data. The empirical (maximized) log-likelihood will
exceed the log-likelihood of the true parameters, on average, by a certain amount
D log L. This bias depends on how easily the model can fit the noise; usually, it
increases with the number of free model parameters.
Before using real experimental data, it is often instructive to consider artificial data

obtained from model simulations. If we generated the data ourselves, we can judge
more easily if a model selection method is able to recover the original, supposedly
true, model.

Example 4.7: Likelihood values

For our running example, we assume an original model of form A with
parameters k�¼ 1, s0¼ 1, c¼ 0.1. Figure 4.15 shows a simulation run of this
model. Artificial noisy data were generated by adding Gaussian random num-
bers with a standard deviation of 25% of the true value. These data can now be
compared to potential candidate models, using the wSSR,

Pn
i¼1 ðyi�xiðqÞÞ2=s2

i
to measure the goodness of fit. For models A and B with predefined parameter
values (see Figure 4.15(a)), the fit is rather poor. After maximum-likelihood
parameter estimation (by minimizing the weighted SSR), we obtain a much
closer match (Figure 4.15(b), numerical values in Table 4.2). In fact, both
models fit the data even better than the original model does. This is a case of
slight overfitting. As expected, model A (with 3 parameters) performs better
than model B (with 2 parameters only). The question remains: which of them
should we choose?
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4.4.5
Likelihood Ratio Test

A philosophical principle calledOckham�s razor (Entia non sunt multiplicanda praeter
necessitatem, entities should not be multiplied without necessity) states that a theory
should not contain unnecessary elements. In statistical model selection, complexity
in amodel always needs to be supported by data. A goodfit by itself will not suffice as a
support if the same data have been used twice, for parameter estimation and model
selection. To find models with reliable parameter estimates and good potential for
predictions, we need to give all models equal chances. To correct for the advantage of
complex models, we may apply the likelihood ratio test or selection criteria, which
both favor models with few parameters.
The likelihood ratio test [52] compares two models A and B (with kA and kB free

parameters, respectively) by their maximal likelihood values LA and LB. The two
models have to be nested, that is,model Bmust be obtainable frommodelAbyfixing a
number of parameters in advance. In the test, the null hypothesis states that both
models explain thedata equallywell.But even ifmodelB is correct,modelAwill showa
higher empirical likelihood because its additional parameters make it easier to fit the
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Figure 4.15 Fit of the example models. (a) Artificial data
(a concentration time series, black dots)were generatedby adding
Gaussian noise to results of the true model (dashed line). Solid
curves show simulations from model A (red) and B (blue) with
fixed parameters. (b) After estimating the parameters of models
A and B, a better fit is obtained.

Table 4.2 Parameter sets and goodness of fit for versions of the examplemodel (compare Fig. 4.15)

kþ a s0 Weighted SSR

Original model 1 1 1 7.32
A, fixed parameters 1 0.25 1 102.59
B, fixed parameters 1 – 1 65.92
A, optimized parameters 0.8345 0.0921 0.6815 4.98
B, optimized parameters 0.3123 – 0.4373 6.13

aThe last column shows the wSSR,
P

iðyi�xiÞ2=s2
i describing the goodness of fit.
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noise. The test accounts for this fact. For large numbers of data points and indepen-
dent, Gaussian-distributed measurement errors, the expression r¼ 2 ln(LA/LB) as-
ymptotically follows a c2-distribution, with kA� kB degrees of freedom. This distribu-
tion is used for the statistical test: if the empirical value of r is significantly high, we
reject thenull hypothesis and acceptmodelA.Otherwise, we accept the simplermodel
B. The likelihood ratio test can also be applied sequentially to more than twomodels,
provided that subsequent models are nested. For a practical example, see [53].

Example 4.8: Likelihood ratio test

In our running example, the test statistics has a value of 2 ln(LA/LB)� 6.13� 4.98
¼ 1.15. The 95% quantile for c2-distribution with 3� 2¼ 1 degree of freedom is
much higher, about 3.84. So according to the likelihood ratio test, we cannot reject
model B. However, the likelihood values depend on the noise levels si(t) assumed in
the likelihood function: With a smaller noise level (same artificial data, noise level
corresponding to 10% of the original values), the weighted SSR for the two models
read approximately 5.0 (model A) and 19.8 (model B). In this case, the test statistics
has a value of 19.8� 5.0¼ 14.8, which is highly significant, so the data would support
model A.

4.4.6
Selection Criteria

We saw that the maximal likelihood contains a certain bias D log L, so for model
selection, it would be better to score models by an unbiased estimator of the true
likelihood D log Lðq̂ðyÞjyÞ�DL. The value of D log L is unknown in general, but
mathematical expressions for it, so-called selection criteria, have been proposed for
certain forms of models. By minimizing these objective functions (instead of the
likelihood itself), we attempt to find a model that best explains the data, while taking
into account the possibility of overfitting. The Akaike information criterion [54]

AIC ¼ �2 log Lðq̂ðyÞjyÞ þ 2k; ð4:40Þ
for instance, directly penalizes the number k of free parameters. If we assume
additive Gaussianmeasurement noise of width 1, the term�2 log L(q|y) in Eq. (4.40)
equals the sum of squared residuals R(q) and we obtain

AIC ¼ RðqÞ þ 2k ð4:41Þ
A correction for small sample sizes yields

AICc ¼ AICþ 2kðkþ 1Þ
n�k�1 ð4:42Þ

where n is the number of data. The Schwarz criterion [55]

BIC ¼ �2 log LðqjyÞ þ k log n ð4:43Þ
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penalizes free parameters more strongly. In contrast to AIC, the BIC is consistent, i.
e., as the number of data n goes to infinity, the true model will be selected with
probability 1. The selection criteria allow to rankmodels and to choose between them,
but there is no notion of significance for the result of such a model selection.

Example 4.9: Selection criteria

Table 4.3 shows the values of different model selection criteria for the running
example 4.6. To produce the artificial data, the standard deviation for the noise in
each data point was 25%of the true values. If we assume the same noise levels for the
model selection procedure, all selection criteria favor the simpler model B. However,
if we refit themodels to the same artificial data, but assuming a smaller noise level in
themodel selection (corresponding to 10%of the original values),model A is favored
because in this case, a good fit becomes more important.

In some cases, the selection criteria may suggest that none of the models is
considerably better than all others. In this situation, we may decide not to select a
single model and instead consider several models. For example, to estimate a model
parameter, we may average over the parameter values obtained from different
models. To assign higher weight to parameters from the more reliable models,
weighting factors can be constructed from the selection criteria [54].

4.4.7
Bayesian Model Selection

Practical reasoning in everyday life is contrary to the logic of maximum likelihood.
In real life, wewould not ask: �Under which explanationwould our observations seem
most likely?�,but rather: �What is themostplausibleexplanationforourobservations?�

Table 4.3 Calculation of selection criteria for the running example.a

r large r small

Model A Model B Model A Model B

n 3 2 –

k 9 9
2k 6 4 –

2kþ 2kðkþ 1Þ
n�k�1 4.67 2.33

k log n 6.59 4.39
Weighted SSR 4.98 6.13 4.99 19.81
AIC 10.98 10.13 10.99 23.81
AICc 9.64 8.46 9.66 22.14
BIC 11.57 10.52 11.58 24.20

aFor each of the criteria (weighted sum of squared residuals (SSR), Akaike information criteria (AIC
and AICc), and Schwarz criterion (BIC), the more favorable values are shown in red.
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Imagine that you toss a coin and obtain heads. Now you have to choose between the
statements A: �The coin always shows heads,� B: �It shows heads and tails with equal
probability.� According to the maximum-likelihood criterion, you should choose A –

which is counterintuitive, because youknow that real coinswill not always showheads.
But how can such kind of prior knowledge – the probability of different explanations
besides our current observations – be included in model selection?
Bayesian statistics is doing just that in a formalized way [56, 57]. Instead of

considering distributions of parameter sets (as in Section 4.2.6), we now treat the
model structure itself by a probability distribution. Before observing the data, all we
know about the model (including its structureM, its parameters q, or both) is its
marginal probability, the prior pðM; qÞ. We can compute the posterior from Bayes�
theorem about conditional probabilities:

pðM; qjyÞ ¼ pðyjM; qÞpðM; qÞ
pðyÞ : ð4:44Þ

According to this formula, we obtain the posterior by multiplying the likelihood
LðM; qjyÞ ¼ pðyjM; qÞ (stating how well the model explains the data) with the prior
(describing how probable the model is in general). By taking the logarithm, we can
rewrite Eq. (4.44) in the form of a sum

ln pðM; qjyÞ ¼ ln pðyjM; qÞ þ ln pðM; qÞ þ const: ð4:45Þ

In practice, the posterior density (4.44) can often not be computed analytically.
However, sampling methods like Monte Carlo Markov chains [56] allow to draw
representative models and parameter sets from the posterior distribution and to
extract all statistical information to arbitrary accuracy. The usual aim in Bayes
estimation is not to select a single model, but to assign probabilities to different
models. In addition, we can also obtain the marginal distribution of a certain
parameter, probabilities for structural features that appear in several models, or
probabilities for quantitative model predictions. By considering many possible
models and weighting them according to their probabilities, we may obtain more
reliable results than from a point estimate by maximum-likelihood estimation.
An application of Bayesian statistics is model selection by the Bayes factor. With

equal priors pðM1Þ ¼ pðM2Þ for both model structures, the posterior ratio of two
modelsM1 andM2, called the Bayes factor, reads

pðM2jyÞ
pðM1jyÞ ¼

pðyjM2Þ
pðyjM1Þ : ð4:46Þ

In contrast to the likelihood ratio, the Bayes factor does not score a model based on a
single optimized parameter set; instead, it is computed from weighted averages over
all possible parameter vectors q1 and q2,

pðyjM2Þ
pðyjM1Þ ¼

Ð
pðyjq2;M2Þpðq2jM2Þdq2Ð
pðyjq1;M1Þpðq1jM1Þdq1 : ð4:47Þ

For complex models, these integrals can be approximated by Monte Carlo sampling.
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The prior probability can also be seen as a regularization term: if the data alone are
insufficient to identify a parameter set or a model structure, model selection is an
underdetermined (or ill-posed) problem; with the prior, a single solution can be
selected, and model selection becomes well determined.
The posterior distribution depends strongly onhowwe choose the priors formodel

structures and parameter values.With a uniformprior (the same prior probability for
eachmodelM), the posterior is proportional to the likelihood. The choice of the prior
can reflect both our biological expectations and our demands for simplicity. This
subjective choice forces modelers to state explicitly their assumptions about the
system structure. Furthermore, a prior distribution can be used, like the above-
mentioned selection criteria, to punish models with many parameters.

4.4.8
Cycle of Experiments and Modeling

Modeling in systems biology usually starts with literature studies and data collection.
The first step toward a quantitative model is to develop hypotheses about the
biological system.Which objects and processes (e.g. substances, chemical reactions,
cell compartments) are relevant? Which mathematical framework is appropriate
(continuous or discrete model, kinetic or stochastic, spatial or nonspatial)?
After the model parameters have been fixed tentatively, models (structure and

parameters) can be judged by how well their results agree with experimental data.
A correctmodel should explain or predict the datawithin their error range; ac2-test or
a parametric bootstrap can be used to rule out models seem to be wrong. Then,
different model variants are formulated and fitted to experimental data, and their
dynamic behavior is studied (e.g. by bifurcation analysis or sensitivity analysis). In
practice, modeling often involves several cycles of model generation, fitting, testing,
and selection [42, 58].
Sometimes, model structures can be selected according to known qualitative

properties: for instance, the chemotaxis system in bacteria is known to show precise
adaptation to external stimuli and amodel of it should account for this fact. In certain
chemotaxismodels, this robustness property follows from the network structure, and
other model structure, which do not ensure precise adaptation, can be ruled out (see
Section 7.4). Such requirements can also be stated in the form of model priors.
In themodel selection process, a number of models may still perform equally well,

and additional data are needed to choose between them.Optimal experimental design
[59] is aimed to determine experiments that are most likely to yield the information
needed to distinguish between the models; The resulting cycle of experiments and
modeling can overcome many of the limitations of one-step model selection.

4.4.9
Models are Growing in Complexity

Systems biology modeling is usually intended to yield fairly plausible mechanistic
models that include all relevant key processes for a biochemical system. In practice,
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models are selected for various aspects: Does the model reflect the basic biological
facts about the system? Is it simple enough to be simulated and fitted?Does it explain
the existing data and can it predict anything that was not known before? If data are
limited – and they always are – there is a trade-off between these requirements, and
statistical model selection can help to avoid overfitting.
Asmoredata ormore accurate data becomeavailable,models can resolvemore and

more details of biological reality. This is illustrated by the development of models
during the last decades:With increasing amounts of data,models ofmetabolism, cell
cycle, or signaling pathways have become more complex, more accurate, and more
predictive. By the time, simple initial models are replaced by detailed biochemical
models that account for many experimental observations and come closer and closer
to biological reality.

Exercises and Problems

Problems

1. Use BRENDA to search for all hydrolases from Rattus norvegicus that have a
Km value below 0.001mM.

2. What are the advantages of using GFP constructs for measuring the cellular
response to perturbations compared to DNA microarrays?

3. Use http://yeastGFP.ucsf.edu to find out howmany copies of the mitochondrial
DNA polymerase catalytic subunit exist in a yeast cell. The gene name can be
found with the help of http://www.yeastgenome.org.

4. Linear regression. A data set {(t1,y1),(t2, y2), . . .} has been obtained from a linear
model

yðtÞ ¼ q1tþ q2 þ xt
with random errors xt. (a) Given the vectors t¼ (t1, t2, . . .)

T and y¼ (y1, y2, . . .)
T,

explain how to estimate the model parameters q1 and q2 by maximizing the
likelihood. Assume that the errors xt are independentGaussian randomvariables
with mean 0 and variance s2.

5. Bootstrapping procedure for the empirical mean. The expected value of a random
number X can be estimated by the empirical mean value �x ¼ 1=n

Pn
m¼1 x

ðmÞ of
n realizations x(1), . . . , x(n). (a) Compute the mean and the variance of the
estimator �x. (b) Choose a distribution of X and approximate the mean
and the variance of �x numerically, by repeatedly drawing samples (x(1), . . . , x(n)).
(c) Implement a bootstrapping procedure and assess the distribution of the
estimate �x based on a single sample (x(1), . . . , x(n)). (d) Explain why these three
results differ.

6. One-norm and two-norm. The method of least squares can be derived from the
maximal likelihood estimator, assuming independent standard Gaussian errors.
(a) Assume that the experimental noise x is not Gaussian, but follows an
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exponential distribution with density p(x)� exp(�|x|/a). Find the minimization
principle that would replace in this case themethod of least squares. (b) Assume
that amodel is fitted to the samedata set (i) by theprinciple of least squares or (ii)
by the minimization principle derived in (a). What will be the qualitative
difference between the two fitting results?

7. Local and global optimization (a) Why is it important in parameter estimation to
find a global optimum rather than a suboptimal local one? Do local optimum
points also have a relevance?

8. A substance appears in a kinetic model in two forms, either free or bound to
proteins; only the free form participates in chemical reactions, and there is a fast
conversion between both forms. Explain how the model could be modified in
order to describe the substance by its total concentration.

9. (a) Discuss Aristotle�s proposition �The whole is more than the sum of its parts�
in the context of biochemical systems and mathematical models describing
them. (b) Speculate about the advantages and disadvantages of reductionist
and holistic approaches in systems biology.

10. Does the concept of a complete cell model make any sense at all? (a) Speculate
about possible definitions. (b) Estimate roughly the number of variables and
parameters in models of living cells. Consider the following types of model: (i)
Kinetic model of the entire metabolism without spatial structure. (ii) Com-
partment model including organelles. (iii) Particle-based model describing
single molecules and their complexes in different conformation states. (iv)
Model with atomic resolution.

11. Discuss the phrase by George Box: �Essentially, all models are wrong, but some
are useful.�What do you think of it? Does it give any helpful advice formodeling?

12. A kinetic model has been fitted to an experimental concentrations time series.
An additional data point can bemeasured in the time series, and you can choose
the time point at which themeasurement will take place. Howwould you choose
the best point in time for the measurement, and what circumstances would
influence your choice?

13. Three models A, B, C have been fitted to experimental data (n¼ 10 data points)
by a maximum-likelihood parameter fit. The respective optimized likelihood
values and the numbers k of free parameters are given below. (a) Calculate the
selection criteria AIC, AICc, and BIC, and use the results to choose between the
models. (b) Assume that the models are nested, that is, A is a submodel of B,
and B is a submodel of C. Decide for one of the models by using the likelihood
ratio test.

Model A B C
k 2 3 4
ln L 10.0 5.0 2.0
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